10 Air Quality

This chapter is based on Appendix C, Air Quality and Greenhouse Gas Technical Report. It presents the environmental setting for the San Mateo County Mosquito and Vector Control District’s (SMCMVCD) Proposed Program, an analysis of environmental impacts on air quality in the District’s Program Area, and mitigation measures for a potentially significant impact. This chapter evaluates Program emissions to determine individual and combined effects in relation to established thresholds of significance. The Proposed Program is primarily the continuation of strategies (components) currently employed for mosquito and/or vector control. It also includes new equipment and chemicals proposed for use under the Physical Control, Vegetation Management, and Chemical Control Components.

Section 10.1, Environmental Setting, presents an overview of the meteorology and climate, types of pollutants and their effects on human health including asthma, existing air quality found in the Program Area, and the regulatory framework. Section 3.2, Environmental Impacts and Mitigation Measures, presents the following:

- Environmental concerns and evaluation criteria
- Evaluation methods and assumptions
- Discussion of the impacts to air quality from existing and future Program activities within the Program components
- Summary of environmental impacts mostly associated with equipment use but also with chemical use
- Discussion of mitigation measures required to reduce the air quality impacts to less than significant

Cumulative impacts related to air quality are addressed in Section 13.8.

10.1 Environmental Setting

State and federal law defines criteria emissions to include the following: reactive or volatile organic compounds (ROCs or VOCs), nitrogen oxides (NO\(_x\)) (nitric oxide [NO] and nitrogen dioxide [NO\(_2\)]), carbon monoxide (CO), sulfur dioxide (SO\(_2\)), respirable particulate matter (PM\(_{10}\)), and fine particulate matter (PM\(_{2.5}\)). Of these, ROCs and NO\(_x\) are precursors to ground-level photochemical ozone (O\(_3\)) formation. Elimination of tetraethyl lead in motor gasoline has eliminated lead (Pb) emissions from vehicles and portable equipment, although tetraethyl lead is still used in some types of aviation gasoline.

During applicable mosquito and/or vector control activities, the Program would generate criteria emissions primarily from the combustion of fossil fuels (i.e., gasoline, diesel, jet fuel) used to operate portable equipment, vehicles, and aircraft across the District’s Service Area. (Control activities would also cause greenhouse gas emissions, which are addressed in Chapter 11.)

10.1.1 Program Location

The aggregated Program Area is defined as the SMCMVCD Service Area (San Mateo County) and the adjacent counties (which include San Francisco, Santa Cruz, and Santa Clara counties) where control activities may be provided upon request. San Mateo, San Francisco, and Santa Clara counties are in the San Francisco Bay Area Air Basin (SFBAAB), under the jurisdiction of the Bay Area Air Quality Management District (BAAQMD); Santa Cruz County is in the North Central Coast Air Basin under jurisdiction of Monterey Bay Unified Air Pollution Control District (MBUAPCD). The bulk of criteria pollutant emissions resulting from Program activities would occur in the SFBAAB.
Air districts in California are required to monitor air pollutant levels to ensure that National Ambient Air Quality Standards (NAAQS) and California Ambient Air Quality Standards (CAAQS) are met and, in the event that they are not, to develop strategies to meet these standards. If the standards are met, the local air basin is classified as being in “attainment”; if the standards are exceeded, it is classified as “nonattainment.” Where insufficient data exist to make a determination, an area is deemed “unclassified.”

The SFBAAB is designated as nonattainment for the state 1-hour, state 8-hour, and federal 8-hour O₃ standards, and nonattainment for all state PM₁₀ and PM₂.₅ standards. The SFBAAB is also designated unclassified for the 24-hour federal PM₁₀ standard, and nonattainment and attainment for the federal 24-hour and annual PM₂.₅ standards, respectively. For all other pollutants and standards, the SFBAAB is designated as either attainment or unclassified status (BAAQMD 2017; CARB 2012a; USEPA 2012a; see Table 10-2).

10.1.2 Meteorology and Climate

The Program Area climate is characterized by moderately wet winters and dry summers. For the region including the District, about 90 percent of the annual total rainfall is received in the November through April period. Between June and September, normal rainfall is typically less than 0.6 inch (1.5 centimeters). Temperatures in the Program Area average about 60 degrees Fahrenheit (°F) (15 degrees Celsius [°C]) annually, with average summer highs in the 70 to 80°F (21 to 27°C) range and average winter lows in the 40 to 50°F (4 to 10°C) range. Precipitation averages about 23 inches (58 centimeters) per year, although annual precipitation can vary significantly from year-to-year. Annual average wind speeds in the Program Area are about 8 miles per hour (3.6 meters per second). The predominant direction of air pollution transport in the Program Area is inland from the coastal areas (BAAQMD 2010a; World Climate 2012; NOAA 2008).

10.1.3 Criteria Air Pollutants and Potential Health Impacts

A criteria or regulated air pollutant is any air pollutant for which ambient air quality standards have been set by the USEPA or the California Air Resources Board (CARB). Primary air quality standards are established to protect human (public) health. Secondary air quality standards are designed to protect public welfare from effects such as diminished production and quality of agricultural crops, reduced visibility, degraded soils, materials and infrastructure damage, and damaged vegetation. Criteria pollutants include O₃, NOₓ, CO, SO₂, PM₁₀, and PM₂.₅. The six most prevalent criteria pollutants and their potential health effects are described below.

10.1.3.1 Ozone

Ground-level O₃ is a secondary pollutant formed in the atmosphere by a series of complex chemical reactions and transformations in the presence of sunlight above urban areas due to the mixing effects of temperature inversions. NOₓ and reactive organic gases (ROGs)¹ are the principal constituents in these reactions. NOₓ and ROG emissions are predominantly attributed to mobile sources (onroad motor vehicles and other mobile sources). Thus, regulation and control of NOₓ and ROGs from these sources is essential to reduce the formation of ground-level O₃.

O₃ is a strong irritating gas that can chemically burn and cause narrowing of airways, forcing the lungs and heart to work harder to provide oxygen to the body. A powerful oxidant, O₃ is capable of destroying organic matter, including human lung and airway tissue; it essentially burns through cell walls. O₃ damages cells in the lungs, making the passages inflamed and swollen. O₃ also causes shortness of breath, nasal congestion, coughing, eye irritation, sore throat, headache, chest discomfort, breathing pain, throat dryness, wheezing, fatigue, and nausea. It can damage alveoli, the individual air sacs in the lungs where oxygen and carbon dioxide are exchanged. O₃ has been associated with a decrease in resistance to infections. People most likely to be affected by O₃ include the elderly, the young, and athletes. O₃ may

¹ Also referred to as ROCs or VOCs.
pose its worst health threat to people who already suffer from respiratory diseases such as asthma, emphysema, and chronic bronchitis (VCAPCD 2003).

10.1.3.2 Nitrogen Dioxide

NO₂ is formed in the atmosphere primarily by the rapid reaction of the colorless gas NO with atmospheric oxygen. It is a reddish brown gas with an odor similar to that of bleach. NO₂ participates in the photochemical reactions that result in O₃. The greatest source of NO, and subsequently NO₂, is the high-temperature combustion of fossil fuels such as in motor vehicle engines and power plant boilers. NO₂ and NO are referred to collectively as NOₓ. NO₂ can irritate and damage the lungs, cause bronchitis and pneumonia, and lower resistance to respiratory infections such as influenza. Researchers have identified harmful effects, similar to those caused by O₃, with progressive changes over 4 hours of exposure causing impaired pulmonary function, increased incidence of acute respiratory disease, and difficult breathing for both bronchitis sufferers and healthy persons (VCAPCD 2003).

10.1.3.3 Carbon Monoxide

CO is a common, colorless, odorless, highly toxic gas. It is produced by natural and anthropogenic (caused by human activity) combustion processes. The major source of CO in urban areas is incomplete combustion of carbon-containing fuels (primarily gasoline, diesel fuel, and natural gas). However, it also results from combustion processes including forest fires and agricultural burning. Ambient CO concentrations are generally higher in the winter, usually on cold, clear days and nights with little or no wind. Low wind speeds inhibit horizontal dispersion, and surface inversions inhibit vertical mixing. Traffic-congested intersections have the potential to result in localized high CO levels.

When inhaled, CO does not directly harm the lungs. The impact from CO is on oxygenation of the entire body. CO combines chemically with hemoglobin, the oxygen-transporting component of blood, which diminishes the ability of blood to carry oxygen to the brain, heart, and other vital organs. Red blood cells have 220 times the attraction for CO as for oxygen. This affinity interferes with movement of oxygen to the body’s tissues. Effects from CO exposure include headaches, nausea, and death. People with heart ailments are at risk from low-level exposure to CO. Also sensitive are people with chronic respiratory disease, the elderly, infants and fetuses, and people suffering from anemia and other conditions that affect the oxygen-carrying capacity of blood. High CO levels in a concentrated area can result in asphyxiations. Studies show a synergistic effect when CO and O₃ are combined (VCAPCD 2003).

10.1.3.4 Sulfur Dioxide

SO₂ is a colorless gas with a sharp, irritating odor. It can react in the atmosphere to produce sulfuric acid and sulfates, which contribute to acid deposition and atmospheric visibility reduction. It also contributes to the formation of PM₁₀. Most of the SO₂ emitted into the atmosphere is from burning sulfur-containing fossil fuels by mobile sources such as marine vessels and farm equipment and stationary fuel combustion. SO₂ irritates the mucous membranes of the eyes and nose and may also affect the mouth, trachea, and lungs. Healthy people may experience sore throats, coughing, and breathing difficulties when exposed to high concentrations. SO₂ causes constriction of the airways and poses a health hazard to asthmatics, which are very sensitive to SO₂. Children often experience more respiratory tract infections when they are exposed to SO₂ (VCAPCD 2003).

10.1.3.5 Respirable Particulate Matter, 10 Microns

PM₁₀ consists of particulate matter, fine dusts and aerosols, 10 microns or smaller in diameter. When inhaled, particles larger than 10 microns generally are caught in the nose and throat and do not enter the lungs. PM₁₀ can enter the large upper branches of the lungs just below the throat, where they are caught and removed (by coughing, spitting, or swallowing).
The primary sources of \( \text{PM}_{10} \) include dust from paved and unpaved roads and construction and demolition operations. Lesser sources of \( \text{PM}_{10} \) include wind erosion, agricultural operations, residential wood combustion, smoke, tailpipe emissions, and industrial sources. These sources have different constituents, and, therefore, varying effects on health. Road dust is composed of many particles other than soil dust. It also includes engine exhaust, tire rubber, oil, and truck load spills. Diesel particulate matter (DPM) contains many toxic particle and elemental carbon (soot), and is considered a toxic air contaminant in California. Airborne particles absorb and adsorb toxic substances and can be inhaled and lodge in the lungs. Once in the lungs, the toxic substances can be absorbed into the bloodstream and carried throughout the body. \( \text{PM}_{10} \) concentrations tend to be lower during the winter months because weather greatly affects \( \text{PM}_{10} \) concentrations. During rain, concentrations are relatively low, and on windy days, \( \text{PM}_{10} \) levels can be high. Photochemical aerosols, formed by chemical reactions with man-made emissions, may also influence \( \text{PM}_{10} \) concentrations.

Elevated ambient particulate levels are associated with premature death, an increased number of asthma attacks, reduced lung function, aggravation of bronchitis, respiratory disease, cancer, and other serious health effects. Short-term exposure to particulates can lead to coughing, minor throat irritation, and a reduction in lung function. Long-term exposure can be more harmful. USEPA estimates that 8 percent of urban nonsmoker lung cancer risk is due to \( \text{PM}_{10} \) in soot from diesel trucks, buses, and cars. Additional studies by USEPA and the Harvard School of Public Health estimate that 50,000 to 60,000 deaths per year in the US are caused by particulates. \( \text{PM}_{10} \) particles collect in the upper portion of the respiratory system, affecting the bronchial tubes, nose, and throat. They contribute to aggravation of asthma, premature death, increased number of asthma attacks, bronchitis, reduced lung function, respiratory disease, aggravation of respiratory and cardiovascular disease, alteration of lung tissue and structure, changes in respiratory defense mechanisms, and cancer (VCAPCD 2003).

### 10.1.3.6 Fine Particulate Matter, 2.5 Microns

\( \text{PM}_{2.5} \) is a mixture of particulate matter, fine dusts, and aerosols 2.5 microns or smaller in aerodynamic diameter. \( \text{PM}_{2.5} \) can enter the deepest portions of the lungs where gas exchange occurs between the air and the blood stream. They are the most dangerous particles because the lungs have no efficient mechanisms for removing them. If these particles are soluble in water, they pass directly into the blood stream within minutes. If they are not soluble in water, they are retained deep in the lungs and can remain there permanently. This tendency increases the risks of long-term disease including chronic respiratory disease, cancer, and increased and premature death. Other effects include increased respiratory stress and disease, decreased lung function, alterations in lung tissue and structure, and alterations in respiratory tract defense mechanisms.

\( \text{PM}_{2.5} \) particles are emitted from activities such as industrial and residential combustion processes, wood burning, and from diesel- and gasoline-powered vehicles. They are also formed in the atmosphere from gases such as \( \text{SO}_2 \), \( \text{NO}_x \), ammonia, and VOCs that are emitted from combustion activities and then become particles as a result of chemical transformations in the air (secondary particles) (VCAPCD 2003).

### 10.1.4 Relationship of Air Pollution to Asthma

#### 10.1.4.1 Sensitive Receptors

Consistent with the health effects of air pollution described above, certain population groups are considered more sensitive to air pollution and odors than others; in particular, children, elderly, and acutely ill and chronically ill persons, especially those with cardiorespiratory diseases such as asthma and bronchitis. Sensitive receptors (land uses) indicate locations where such individuals are typically found, namely schools, daycare centers, hospitals, convalescent homes, residences of sensitive persons, and parks with active recreational uses, such as youth sports.
Persons engaged in strenuous work or physical exercise also have increased sensitivity to poor air quality. Residential areas are considered more sensitive to air quality conditions than commercial and industrial areas, because people generally spend longer periods of time at their residences, resulting in greater exposure to ambient air quality conditions. Recreational uses such as parks are also considered sensitive, due to the greater exposure to ambient air quality conditions and because the presence of pollution detracts from the recreational experience.

Due to the wide geographic dispersion of District activities and their short-term temporary nature at any particular location, no quantifiable risk to sensitive receptors or the general public would be posed by Program-related engine exhaust.

### 10.1.5 Existing Air Quality

Air quality is affected by a variety of sources in the vicinity of the Program Area. Large stationary sources such as oil refineries and power plants emit substantial amounts of NO\textsubscript{x} and ROCs, along with PM\textsubscript{10} and PM\textsubscript{2.5}. Light motor vehicles, diesel-powered construction equipment, and commercial trucks used in the Program Area are another source of these pollutants. Noncombustion sources of PM\textsubscript{10} and PM\textsubscript{2.5} include fugitive dust from roads, construction, demolition, and earthmoving. Finally, commercial and general aviation aircraft generate emissions that affect air quality.

O\textsubscript{3} is a secondary pollutant that is not emitted directly by sources, but rather is formed by a reaction between NO\textsubscript{x} and ROCs in the presence of sunlight. Reductions in O\textsubscript{3} concentrations are dependent upon reducing emissions of these precursors. The major sources of O\textsubscript{3} precursors in the Bay Area are motor vehicles and other mobile equipment (including agricultural equipment), solvent use, petroleum industry activities, nonelectric agricultural water pumping, and electric utilities operation.

BAAQMD and MBUAPCD operate extensive regional air monitoring networks comprised of monitoring stations (sites) that collectively measure the ambient concentrations of six criteria air pollutants: O\textsubscript{3}, NO\textsubscript{2}, SO\textsubscript{2}, CO, PM\textsubscript{10}, and PM\textsubscript{2.5}. Not all monitoring stations are fully instrumented for these pollutants, while some sites have not been operating for adequate periods of time to provide representative data for characterization of attainment status.

#### 10.1.5.1 Sources of Air Pollutants

The most significant regional sources of O\textsubscript{3}, NO\textsubscript{2}, and CO in ambient air are automobiles, trucks, and other onroad vehicles, along with trains, vessels, and aircraft. O\textsubscript{3} is not directly emitted; rather, photochemical O\textsubscript{3} is formed by the atmospheric reaction of VOCs and NO\textsubscript{x} in sunlight. Gasoline and diesel engines emit VOCs and NO\textsubscript{x} as combustion products, as does natural gas-fired equipment (stationary sources) such as pump engines, gas turbine generators, process heaters, and steam boilers.

Local PM\textsubscript{10} emissions are primarily the result of fugitive dust from travel on unpaved roads, as well as construction and agricultural activities. Coarser particles also may be emitted from activities that disturb the topsoil. Other sources include wind-blown dust, pollen, salts, brake dust, and tire wear. Although PM\textsubscript{2.5} is a subset of PM\textsubscript{10}, it differs from the rest of PM\textsubscript{10}. While most of the ambient PM\textsubscript{10} results from direct emissions of the pollutant, a significant amount of the ambient PM\textsubscript{2.5} results from transformation of precursors and condensing of gaseous pollutants in the atmosphere. Other than direct PM\textsubscript{2.5} emissions, the key pollutants contributing to PM\textsubscript{2.5} concentrations in the atmosphere are SO\textsubscript{2}, NO\textsubscript{x}, VOCs, and ammonia (CARB 2005).

Mobile sources used in mosquito and vector control activities include onroad fleet vehicles (light- and medium-duty trucks, vans, passenger cars), offroad ATVs, watercraft (motorboats, airboats), aircraft (helicopters and fixed-wing), portable equipment (pumps, sprayers, generators), and small equipment (handheld sprayers, foggers, dusters). Except for 2-stroke engines used in small lightweight equipment (spark ignition, 50:1 gas/oil mix), engines are 4-stroke gasoline (spark ignition) or diesel fuel (compression ignition). The dominant fuel used for these mobile sources is motor gasoline along with some diesel fuel
(larger trucks), aviation gasoline (fixed-wing aircraft), and jet fuel (turbine-powered helicopters). Light trucks, vans, and passenger cars are normally used for responding to public service requests and vector surveillance.

10.1.5.2 Volatile Organic Compounds

VOCs are present in both indoor and outdoor environments because they are necessary ingredients in industrial and consumer products such as paints, varnishes, sealers, thinners, solvents, adhesives, sealants, and some types of pesticides and herbicides. Outdoors, VOCs are released into the air mainly during manufacture or use of such products. Indoors, in addition to interior painting, VOCs are released into the air mainly from the use of household and janitorial products. VOCs are of concern as both indoor and outdoor air pollutants; however, the concerns are different. Indoors, the main concern is human health impacts. Outdoors, air districts and the USEPA regulate VOCs mainly because they contribute — along with NOX — to the formation of photochemical ozone.

> The USEPA, per 40 CFR 51.100(s), defines VOCs as any compound of carbon, excluding carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate, which participates in atmospheric photochemical reactions, except those designated by the USEPA as having negligible photochemical reactivity (USEPA 2009b).

> Scientific literature generally defines VOCs as organic chemical compounds whose composition makes it possible for them to evaporate under normal atmospheric conditions of temperature and pressure. The volatility of an organic compound is inversely proportional to its boiling point (BP), i.e., the lower the BP, the higher its volatility (USEPA 2014d).

The European Union (2004) defines a VOC as any organic compound having an initial BP less than or equal to 482°F (250°C) measured at standard atmospheric pressure at sea level (760 millimeters mercury or 14.7 pounds per square inch absolute). The World Health Organization (1989) categorizes organic pollutants as very volatile, volatile, and semivolatile. Very volatile organic compounds (VVOCs) are so volatile that they typically exist as gases rather than being present in materials. Semivolatile organic compounds (SVOCs) and particulate organic matter (POM) constitute very small fractions of the total amount of organic pollutants found in air, mainly because they are liquids or solids at ambient temperature. Between VVOCs and SVOCs are VOCs, which include several common species of organic pollutants. The four broad categories of organic air pollutants are described below (WHO 1989; Underwriters Laboratories 2012):

> Very volatile organic compounds (VVOCs) have BPs less than 122°F (50°C), most are gases at ambient temperature, and include compounds such as propane, butane, pentane, formaldehyde, acetaldehyde, and methyl chloride (chloromethane). Of these, formaldehyde and acetaldehyde are present in gasoline and diesel engine exhaust.

> Volatile organic compounds (VOCs) have BPs in the range to 122 to 482°F (50 to 250°C) and include compounds such as hexane, benzene, toluene, ethylbenzene, xylenes (collectively referred to as BTEX), acetone, methyl alcohol (methanol), ethyl alcohol (ethanol), and isopropyl alcohol (2-propanol or isopropanol). Compounds such as BTEX are present in gasoline and diesel engine exhaust.

> Semivolatile organic compounds (SVOCs) have BPs in the range of 482 to 716°F (250 to 380°C) and include compounds such as polycyclic aromatic hydrocarbons (PAHs), pesticides (e.g., chlordane), plasticizers (e.g., phthalates), and fire retardants (e.g., polychlorinated biphenyls (PCBs), polybrominated biphenyls). DPM in diesel engine exhaust contains compounds such as PAHs.

> Particulate organic matter (POM) has BPs greater than 716°F (380°C) and includes the heavier compounds of DPM, which are essentially nonvolatile in the ambient environment.
In addition, petroleum middle distillates have BPs in the range of 300 to 700°F (150 to 370°C) – between VOCs and SVOCs – and include common fuels such as kerosene (BP 150 to 275°C), diesel fuel (BP 150 to 370°C), and aviation jet fuels (initial BP 175°C). In certain applications, which are not common, kerosene may be used as a carrier solvent for some types of pesticides and herbicides. However, due to its relatively low volatility, kerosene does not evaporate readily at ambient temperatures.

In California and the United States, VOC emissions to the outdoors are regulated by air districts (e.g., BAAQMD) and the USEPA mainly to reduce the formation of ozone, a constituent of photochemical smog. However, not all VOCs are considered photochemically reactive. VOCs that are nonreactive or of negligible reactivity are exempted from the definition of VOCs used by air districts and the USEPA (2009b). Since California has 35 air districts – including the BAAQMD – the specific definition of VOCs can change somewhat depending on jurisdiction. (USEPA 2014d)

The USEPA formerly defined the regulated organic compounds in outdoor air as reactive organic gases (ROGs), while some air districts adopted the term reactive organic compounds (ROCs). These terminologies clarified the meanings as being limited to photochemically reactive compounds. However, the USEPA later changed its terminology to VOCs to include substances that may not be reactive but could be harmful to human health in high enough concentrations, particularly indoors. Reducing VOCs indoors and outdoors is an important health and environmental goal. However, VOCs that may be of health risk concern do not impact photochemical reactions and, therefore, are not regulated by the USEPA or air districts (42 USC 7401 et seq. 1970).

As described above, the primary sources of VVOC and VOC emissions from mosquito abatement and vector control activities are from gasoline and diesel engines used to power application equipment and transport personnel and materials. Also included are aircraft emissions, mainly from turbine-powered helicopters burning jet fuel. Further, SVOC and POM emissions from diesel engines in the form of DPM are of particular concern because PAHs are carcinogenic (BAAQMD 2004; OEHHA 2009). Other SVOCs contained in mosquito abatement and vector control materials would be emitted in relatively minor quantities during application activities compared to engine exhaust and would be neither substantial nor cumulatively considerable (see Section 10.2.2).

10.1.6 Regulatory Framework

The following paragraphs summarize the federal, state, and local agencies and the laws and regulations governing air quality that are provided in Appendix C. It is the practice of the District to work with Service Area jurisdictions and agencies during Program planning to reasonably consider the local environmental protection policies and to conform to the extent required.

10.1.6.1 Standards and Attainment Status

The Clean Air Act of 1970 (CAA, amended 1977 and 1990, 42 USC 7401 et seq.) established NAAQS, and individual states retained the option to adopt more stringent standards and to include other pollution sources. CAAQS tend to be at least as protective as national standards and are often more stringent.

The ambient air quality standards shown in Table 10-1 are intended to protect the public health and welfare and specify the concentration of pollutants (with an adequate margin of safety) to which the public may be exposed without adverse health effects. The standards are designed to protect those segments of the public most susceptible to respiratory distress (known as sensitive receptors), including asthmatics, the very young, the elderly, people weak from other illness or disease, or persons engaged in strenuous work or exercise. Healthy adults can tolerate occasional exposure to air pollution levels somewhat above the ambient air quality standards before adverse health effects are observed.

In general, the San Francisco Bay Area experiences low concentrations of most pollutants when compared to state and federal standards, except for O₃ and particulate matter, for which standards are periodically exceeded. The attainment status of the main Bay Area region is shown in Table 10-2.
## Table 10-1 Ambient Air Quality Standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>California Standards</th>
<th>Federal Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ppmv</td>
<td>µg/m³</td>
</tr>
<tr>
<td>Ozone (O₃)</td>
<td>1-hour</td>
<td>0.09</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>8-hour</td>
<td>0.07</td>
<td>137</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂)</td>
<td>1-hour</td>
<td>0.18</td>
<td>338</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>0.03</td>
<td>56</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO₂)</td>
<td>1-hour</td>
<td>0.25</td>
<td>655</td>
</tr>
<tr>
<td></td>
<td>3-hour Secondary</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>0.04</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>1-hour</td>
<td>20</td>
<td>22,898</td>
</tr>
<tr>
<td></td>
<td>8-hour</td>
<td>9</td>
<td>10,304</td>
</tr>
<tr>
<td></td>
<td>Lake Tahoe (8-hr)</td>
<td>6</td>
<td>6,869</td>
</tr>
<tr>
<td>Particulates (as PM₁₀)</td>
<td>24-hour</td>
<td>—</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>—</td>
<td>20</td>
</tr>
<tr>
<td>Particulates (as PM₂.₅)</td>
<td>24-hour</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Annual Primary</td>
<td>—</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Annual Secondary</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>30-day</td>
<td>—</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>3-month (rolling)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Sulfates (as SO₄)</td>
<td>24-hour</td>
<td>—</td>
<td>25</td>
</tr>
<tr>
<td>Hydrogen Sulfide (H₂S)</td>
<td>1-hour</td>
<td>0.03</td>
<td>42</td>
</tr>
<tr>
<td>Vinyl Chloride (C₂H₃Cl)</td>
<td>24-hour</td>
<td>0.01</td>
<td>26</td>
</tr>
<tr>
<td>Visibility Reducing Particles</td>
<td>8-hour</td>
<td>—</td>
<td>Extinction coefficient of 0.23 per kilometer; visibility of 10 miles or more (0.07 to 30 miles or more for Lake Tahoe) due to particles when relative humidity is less than 70 percent.</td>
</tr>
</tbody>
</table>

Sources: BAAQMD 2014; CARB 2013a

ppmv = part(s) per million by volume

µg/m³ = microgram(s) per cubic meter

The 1.5 µg/m³ federal quarterly lead standard applied until 2008; 0.15 µg/m³ rolling 3-month average thereafter. For gases, µg /m³ calculated from ppmv based on molecular weight and standard conditions. Standard Temperature 25°C. Standard Molar Volume 24.465 liter/g-mole
### Table 10-2  Attainment Status Summary - Bay Area Region

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>State Designation</th>
<th>Federal Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (O₃) (1-hour)</td>
<td>Nonattainment</td>
<td>—¹</td>
</tr>
<tr>
<td>Ozone (O₃) (8-hour)</td>
<td>Nonattainment</td>
<td>Nonattainment²</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂) (1-hour)</td>
<td>Attainment</td>
<td>Unclassified³</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂) (annual)</td>
<td>Attainment</td>
<td>Attainment</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO₂)</td>
<td>Attainment</td>
<td>Attainment</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>Attainment</td>
<td>Attainment</td>
</tr>
<tr>
<td>Resp. Particulates (as PM₁₀) (24-hour)</td>
<td>Nonattainment</td>
<td>Unclassified³</td>
</tr>
<tr>
<td>Resp. Particulates (as PM₁₀) (annual)</td>
<td>Nonattainment</td>
<td>—¹</td>
</tr>
<tr>
<td>Fine Particulates (as PM₂.₅) (24-hour)</td>
<td>—</td>
<td>Nonattainment</td>
</tr>
<tr>
<td>Fine Particulates (as PM₂.₅) (annual)</td>
<td>Nonattainment</td>
<td>Attainment</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>Attainment</td>
<td>Attainment</td>
</tr>
<tr>
<td>Sulfates (as SO₄)</td>
<td>Attainment</td>
<td>—¹</td>
</tr>
<tr>
<td>Hydrogen Sulfide (H₂S)</td>
<td>Unclassified⁴</td>
<td>—¹</td>
</tr>
<tr>
<td>Vinyl Chloride (C₂H₃Cl)</td>
<td>ND⁴</td>
<td>—¹</td>
</tr>
<tr>
<td>Visibility</td>
<td>Unclassified³</td>
<td>—¹</td>
</tr>
</tbody>
</table>

Sources: BAAQMD 2014; CARB 2013b

Notes:

1. No standard exists
2. The 0.08 ppmv federal 8-hour O₃ standard applied until 2008; 0.075 ppmv thereafter
3. At the time of designation, if the available data do not support a designation of attainment or nonattainment, the area is designated as unclassified.
4. No data/information available

### 10.1.6.2  Federal Authority

The 1977 CAA amendments required that regional planning and air pollution control agencies prepare regional air quality plans to outline the measures by which both stationary and mobile sources of pollutants can be controlled to achieve all standards by the deadlines specified in the act.

For the SFBAAB, the Association of Bay Area Governments, the Metropolitan Transportation Commission, and BAAQMD jointly prepared the *2005 Bay Area Ozone Strategy*, which provided inputs to the most recent *2010 Clean Air Plan* issued by BAAQMD (2010b). These plans contain control strategies that demonstrate attainment with NAAQS by the deadlines established in the federal CAA and become part of the State Implementation Plan (SIP) administered by CARB and submitted to USEPA. Similarly, MBUAPCD is also required to prepare and submit a tailored clean air implementation plan to state and federal regulators.

Under the 1990 CAA amendments, areas that did not meet the original federal 1-hour O₃ standard were classified according to the severity of each area’s respective O₃ problem. The 1-hour classifications were Marginal, Moderate, Serious, Severe, and Extreme.
10.1.6.3 State Authority
In 1988, the California legislature passed the California CAA (California Health and Safety Code Section 39600 et seq.), which, like its federal counterpart, called for designations of areas as attainment or nonattainment based on state rather than federal standards.

Similar to the federal CAA, the California CAA also classifies areas according to pollution levels. Under the California CAA, the Bay Area is a “Serious” $O_3$ nonattainment area and state PM$_{10}$ and PM$_{2.5}$ nonattainment areas. In addition, localized CO concentrations, also known as CO “hotspots,” may occur at heavily traveled roadways, particularly at intersections or other locations where the traffic is congested and vehicles idle for prolonged periods. CO concentrations exceeding the existing standard may occur at intersections that operate at a Level of Service D or worse.

CARB is the state agency responsible for regulating air quality, and its responsibilities include establishing CAAQS, emissions standards, and regulations for mobile emissions sources (e.g., autos, trucks, etc.) as well as overseeing the efforts of countywide and multicounty air pollution control districts, which have primary responsibility over stationary sources. The emission standards most relevant to the Program are those related to automobiles, light- and medium-duty trucks, and California heavy-duty truck and construction equipment engines.

10.1.6.4 Local Authority
BAAQMD is the regional agency responsible for air quality regulation within the San Francisco Bay Area, along with MBUAPCD in its respective jurisdiction. Air quality is regulated through planning, monitoring, rulemaking, permitting, and enforcement activities. Districts have permit authority over most types of stationary emission sources and can require stationary sources to obtain permits; they can also impose emission limits, set fuel or material specifications, or establish operational limits to reduce air emissions. BAAQMD also regulates new or expanding stationary sources of toxic air contaminants. For state air quality planning purposes, the Bay Area is classified by the California CAA as a nonattainment area for $O_3$. The “Serious” classification triggers various plan submittal requirements and transportation performance standards. One such requirement is that each district update its air quality attainment plan every 3 years (triennially) to reflect progress in meeting the air quality standards and to incorporate new information regarding the feasibility of control measures and new emission inventory data. Districts indirectly regulate construction projects that use mobile sources via the statewide Portable Equipment Registration Program (PERP) discussed below. Since the Program does not meet the definition of permanent stationary sources, no permits would be required from BAAQMD or MBUAPCD.

10.1.6.5 Source-Specific Regulations
10.1.6.5.1 Nonroad Engine Standards
CARB regulates mobile sources of air pollution in the State of California. Self-propelled nonroad construction equipment is considered a vehicle, as defined by the California Vehicle Code. A vehicle may have an engine that both propels the vehicle and powers equipment mounted on the vehicle. As such, vehicles are generally exempt from regulation by the air districts. However, not included in exemption provisions is any equipment mounted on a vehicle that would otherwise require a permit under air district rules and regulations.

Federal Tier 1 standards for offroad diesel engines were adopted as part of the California requirements for 1995. Federal Tier 2 and Tier 3 standards were adopted in 2000 and selectively apply to the full range of diesel offroad engine power categories. Both Tier 2 and Tier 3 standards include durability requirements to ensure compliance with the standards throughout the useful life of the engine (40 CFR 89.112, 13 CCR 2423).
On May 11, 2004, the USEPA signed the final rule implementing Tier 4 emission standards, which are to be phased-in over the period of 2008 to 2015 (69 Federal Register 38957-39273, 29 June 2004). The Tier 4 standards require that PM and NOx emissions be further reduced by about 90 percent. Such emission reductions can be achieved through the use of advanced control technologies – including advanced exhaust gas after treatment similar to those required by the 2007–2010 standards for highway diesel engines.

10.1.6.5.2 Portable Equipment Registration Program

The statewide PERP establishes a uniform program to regulate portable engines and portable engine-driven equipment units. Once registered in PERP, engines and equipment units may operate throughout the California without the need to obtain individual permits from local air districts such as BAAQMD and MBUAPCD. Owners or operators of portable engines and certain types of equipment can register their units under the PERP to operate their equipment anywhere in the state. (CARB 2012b)

BAAQMD operates stipulated enforcement programs for owners and operators of portable equipment, which does not comply with CARB’s Portable Diesel Airborne Toxic Control Measure (ATCM) regulation. Under this rule, any portable diesel engine not registered in the PERP prior to January 1, 2006, is illegal, and may not be operated in California unless it meets the ATCM Tier requirements or has an operating permit issued by an air district.

BAAQMD Regulation 2, Sections 2-1-105 and 2-1-114 list types of portable equipment commonly used in construction as exempt from stationary source rule requirements provided that the equipment complies with all applicable requirements of the statewide PERP pursuant to 13 CCR, Division 3, Chapter 3, Article 5. The District’s Proposed Program is not subject to BAAQMD permitting requirements because the Program would not involve any stationary air pollution sources that are subject to BAAQMD review, including engine-driven pumps, generators, and air compressors.

10.1.6.5.3 Air Toxics Control Measures

On July 26, 2007, CARB adopted a regulation to reduce DPM and NOx emissions from in use (existing) offroad heavy-duty diesel vehicles in California. Such vehicles are used in construction, mining, and industrial operations. Not included in this category are locomotives, commercial marine vessels, marine engines over 50 horsepower, or recreational vehicles. The ATCM regulation supplements existing tiered emission standards for nonroad diesel engines in California (CARB 2012c).

10.1.6.5.4 Senate Bill 656

Senate Bill 656 is a planning requirement that calls for a plan and strategy for reducing PM$_{2.5}$ and PM$_{10}$. This bill requires CARB to identify, develop, and adopt a list of control measures to reduce the PM$_{2.5}$ and PM$_{10}$ emissions from new and existing stationary, mobile, and area sources. BAAQMD has developed particulate matter control measures and submitted plans to CARB that include lists of measures to reduce particulate matter. Under the plans, air districts are required to continue to assess PM$_{2.5}$ and PM$_{10}$ emissions and their impacts.

For construction emissions of fugitive PM$_{10}$, California air districts have adopted a number of feasible control measures that can be reasonably implemented to significantly reduce fugitive PM$_{10}$ emissions from construction. In general, most districts’ approach to CEQA analyses of construction impacts is to emphasize implementation of effective and comprehensive control measures rather than detailed quantification of emissions.
10.1.6.5.5 Nuisance (Odors)

BAAQMD and MBUAPCD CEQA Air Quality Guidelines (BAAQMD 2017; MBUAPCD 2008) require an assessment of a project’s potential to cause a public nuisance by subjecting surrounding land uses (receptors) to objectionable odors.

Nuisance is a fundamental air pollution control rule across the state in all air districts, including MBUAPCD Rule 402, and typically contain the same language as BAAQMD Regulation 1, Rule 301 which states that “No person shall discharge from any source whatsoever such quantities of air contaminants or other material which cause injury, detriment, nuisance or annoyance to any considerable number of persons or the public; or which endangers the comfort, repose, health or safety of any such persons or the public, or which causes, or has a natural tendency to cause, injury or damage to business or property.”

BAAQMD Regulation 7, Rule 102 defines an objectionable odor problem as when the Air Pollution Control Officer “receives odor complaints from ten or more complainants within a 90-day period, alleging that a person has caused odors perceived at or beyond the property line of such person and deemed to be objectionable by the complainants in the normal course of their work, travel, or residence.” The assessment protocol includes projects that have the potential to cause odors or projects that may subject potential sensitive receptors to nearby existing or proposed land uses that emit objectionable odors.

Some of the pesticides used for mosquito control have an unpleasant odor in concentrated form, in particular the Bti liquids and the adulticides pyrethrin and permethrin. Bti liquids, when diluted with water and sprayed onto water containing breeding mosquitoes, have almost no odor within a few minutes of application. The adulticides pyrethrin and permethrin have no residual smell once the ULV fog dissipates (about 20 minutes maximum). The BVA-2 oil has an odor, although once applied (3 to 5 gallons per acre) not much odor remains.

10.1.6.5.6 Toxic Air Contaminants

A project with the potential to expose sensitive receptors (including residential areas) or the general public to substantial levels of toxic air contaminants, as designated by CARB under 17 CCR Section 93001, listed in BAAQMD’s Toxic Air Contaminants Inventory (BAAQMD 2004), would be deemed to have a significant impact. Projects that would locate receptors near existing sources of toxic air contaminants are included, as well as projects that would place sources of toxic air contaminants near existing receptors.

Projects that have the potential to expose the public to toxic air contaminants in excess of the following thresholds would be considered to have a significant air quality impact for receptors within 1,000 feet of a source boundary. These thresholds, which are based on the 2017 BAAQMD CEQA Air Quality Guidelines, are as follows:

> Probability of contracting cancer for the Maximally Exposed Individual (MEI) that exceeds 10 in 1 million. The MEI is a hypothetical person exposed for 70 years continuously (24 hours per day, 365 days per year).

> Ground-level concentrations of chronic or acute noncarcinogenic toxic air contaminants that result in a Hazard Index greater than 1 for the MEI.

DPM is considered a toxic air contaminant in California (BAAQMD 2004). Due to the limited use of diesel-powered vehicles and equipment and the Program’s wide geographic scope, DPM emissions would not be sufficient to pose a significant risk to sensitive receptors from mosquito and/or vector control equipment operations.
10.2 Environmental Impacts and Mitigation Measures

10.2.1 Evaluation Concerns and Criteria

The environmental concerns are those identified below from the CEQA Guidelines and from public scoping. The public identified the following issues:

- Address impacts of spraying/fogging on air quality for humans and pets alike.
- Address impacts of emissions of air pollutants from control and treatment methods and combustion of fuels.

The focus in this chapter is on the use of equipment to perform all Program activities and the resulting emissions impacts to air quality. Concerning the chemical treatment methods, the effects of applications (including spraying) of those specific chemicals is addressed in Section 6.2 for ecological health and Section 7.2 for human health. The CEQA Guidelines cover the issues from public scoping.

10.2.1.1 Standards of Significance

The PEIR addresses the following criteria/standards of significance for air resources as based on CEQA Guidelines Appendix G, Environmental Checklist Form, Section III. Would the project:

- Conflict with or obstruct implementation of the applicable Air Quality Attainment Plan or Congestion Management Plan?
- Violate any stationary source air quality standard or contribute to an existing or projected air quality violation?
- Result in a net increase of any criteria pollutant for which the project region is nonattainment under an applicable federal or state ambient air quality standard (including releasing emissions, which exceed quantitative thresholds for ozone precursors)?
- Expose sensitive receptors to substantial pollutant concentrations?
- Create objectionable odors affecting a substantial number of people?

For this Program, determinations made with respect to significance criteria are documented in Sections 10.2.3 through 10.2.8.

10.2.1.1.1 BAAQMD CEQA Guidelines

The BAAQMD is in the process of updating its CEQA Air Quality Guidelines, and the most current version is dated May 2017 and is used in this impact analysis. The May 2017 version of the Guidelines includes revisions made to the BAAQMD’s 2010 Guidelines in order to address the California Supreme Court’s 2015 opinion in Cal. Bldg. Indus. Ass’n vs. Bay Area Air Quality Mgmt. Dist., 62 Cal.4th 369. The CEQA Air Quality Guidelines is a guidance document to provide lead government agencies, consultants, and project proponents with uniform procedures for assessing air quality impacts and preparing the air quality sections of environmental documents for projects subject to CEQA. The document describes the criteria that BAAQMD uses when reviewing and commenting on the adequacy of environmental documents. It recommends quantitative thresholds for use in determining whether construction and operational activities associated with projects would have significant adverse environmental impacts, identifies methodologies for predicting project emissions and impacts, and identifies measures that can be used to avoid or reduce air quality impacts. (BAAQMD 2017)

For this recirculated PEIR, air quality impacts will be quantitatively assessed using significance thresholds established by BAAQMD in its 2017 CEQA Guidelines for nonattainment pollutants and USEPA for attainment pollutants, which are listed in Table 10-3. Federal Prevention of Significant Deterioration thresholds contained in 40 CFR 51.166(b)(23)(i) applicable to SMCMVCD are also higher than BAAQMD.
thresholds. The 2017 BAAQMD thresholds are the most stringent (lowest) quantitative criteria for assessing the potential for all Program impacts under CEQA. Vector control activities do not present a stationary source, since equipment is used throughout the Service Area.

### Table 10-3 CEQA Significance Thresholds - BAAQMD (2017)

<table>
<thead>
<tr>
<th>Criteria Pollutants, Precursors, GHGs, Risks and Odors</th>
<th>Construction lbs/day</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lbs/day</td>
<td>tons/year</td>
</tr>
<tr>
<td>Reactive Organic Gases (ROGs)</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>Nitrogen Oxides (NOx)</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO₂)²</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>PM₁₀ (exhaust)</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>PM₂.₅ (exhaust)</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>PM₁₀ / PM₂.₅ (fugitive dust)³</td>
<td>BMPs</td>
<td>None</td>
</tr>
<tr>
<td>Local Carbon Monoxide (CO)⁴</td>
<td>None</td>
<td>CAAQS: 9 ppmv (8-hr); 20 ppmv (1-hr)</td>
</tr>
<tr>
<td>GHGs - Stationary Sources</td>
<td>None</td>
<td>10,000 MT CO₂e/year</td>
</tr>
<tr>
<td>GHGs - Other than Stationary Sources</td>
<td>None</td>
<td>Compliance with GHG Reduction Strategy OR 1,100 MT of CO₂e/yr OR 4.6 MT CO₂e/SP/yr (res + emp)</td>
</tr>
<tr>
<td>Risks &amp; Hazards (individual project)</td>
<td>Compliance with Community Risk Reduction Plan OR Increased cancer risk of &gt;10.0 in a million; Increased noncancer risk of &gt;1.0 Hazard Index (Chronic or Acute); Ambient PM₂.₅ increase: &gt;0.3 µg/m³ annual average</td>
<td></td>
</tr>
<tr>
<td>Risks &amp; Hazards (cumulative threshold)</td>
<td>Compliance with Community Risk Reduction Plan OR Increased cancer risk of &gt;100.0 in a million; Increased noncancer risk of &gt;10.0 Hazard Index (Chronic or Acute); Ambient PM₂.₅ increase: &gt;0.8 µg/m³ annual average</td>
<td></td>
</tr>
<tr>
<td>Accidental Release of Acutely Hazardous Air Pollutants/Materials</td>
<td>None</td>
<td>Storage or use of acutely hazardous materials located near receptors or new receptors locating near stored or used acutely hazardous materials are considered significant</td>
</tr>
<tr>
<td>Odors</td>
<td>None</td>
<td>5 confirmed complaints per year averaged over 3 years</td>
</tr>
</tbody>
</table>

Source: BAAQMD 2017 (see Note 1), 40 CFR 51.166 (see Note 2)

CO₂e = carbon dioxide equivalent
GHGs = greenhouse gases
MT = metric tonne(s)
µg/m³ = microgram(s) per cubic meter
ppmv = part(s) per million by volume
SP = Service Population

Notes:
1. The air quality analysis will follow the BAAQMD 2017 significance thresholds because they are the most current.
2. Prevention of Significant Deterioration, annual only
3. BMPs = Best Management Practices for control of fugitive dust
4. Not to exceed California Ambient Air Quality Standards for CO
10.2.2 Evaluation Methods and Assumptions

As described in Section 10.1.5, operation of onroad fleet vehicles, offroad ATVs, watercraft, aircraft, portable equipment, and small equipment would result in emissions of criteria pollutants (NO\textsubscript{X}, VOCs, CO, sulfur oxides [SO\textsubscript{X}], PM\textsubscript{10}, PM\textsubscript{2.5}) in engine exhaust. Detailed lists of equipment, estimated usage, and emission calculations are provided in Appendix C, in Attachment B. The District provided equipment lists and annual activity schedules. Emission calculations were performed using the most recent and applicable emission factors published by CARB (2008a), Hare and Springer (1973), and USEPA (1991d, 2011b, 2011c, 2012a).

From Table 2-8 in Section 2.7, the District is implementing BMPs to avoid or minimize environmental impacts from applications of pesticides, surfactants, and/or herbicides (Category H) under the Vegetation Management and/or Chemical Control Components. The impact significance determinations assume that the District will continue to implement the following BMPs:

> Engine idling times will be minimized either by shutting equipment and vehicles off when not in use or reducing the maximum idling time to 5 minutes. Correct tire inflation will be maintained in accordance with manufacturer's specifications on wheeled equipment and vehicles to prevent excessive rolling resistance. All equipment and vehicles will be maintained and properly tuned in accordance with manufacturer's specifications. All equipment will be checked by a certified visible emissions evaluator if visible emissions are apparent to onsite staff. (BMP A14)

> District staff will conduct applications with strict adherence to product label directions that include approved application rates and methods, storage, transportation, mixing, and container disposal. Applicators will complete training on an annual basis. (BMP H1)

> District will avoid use of surfactants when feasible in sites with aquatic nontargets or natural enemies of mosquitoes present such as nymphaal damselflies and dragonflies, dytiscids, hydrophilids, corixids, notonectids, ephydrids, etc. Surfactants are the only tool that can be used with pupae to prevent adult mosquito emergence. The District will use a microbial larvicide (Bti, Bs) or insect growth regulator (e.g., methoprene) instead or another alternative when possible. (BMP H2)

> Materials will be applied at the lowest effective concentration for a specific set of vectors and environmental conditions. Application rates will never exceed the maximum label application rate. Truck, hand larviciding, and fogging equipment will be calibrated and inspected semiannually. (BMP H3)

> To minimize application of pesticides, application of pesticides will be informed by surveillance and monitoring of vector populations. (BMP H4)

> District staff will follow label requirements for storage, loading, and mixing of pesticides and herbicides. Handle all mixing and transferring of herbicides within a contained area. (BMP H5)

> Postpone or cease application when predetermined weather parameters exceed product label specifications, when wind speeds exceed the velocity as stated on the product label, or when a high chance of rain is predicted and rain is a determining factor on the label of the material to be applied. (BMP H6)

> Applicators will remain aware of wind conditions prior to and during application events to minimize any possible unwanted drift to waterbodies, and other areas adjacent to the application areas. (BMP H7)

> Spray nozzles for the application of larvicides or herbicides will be adjusted to produce larger droplet size rather than smaller droplet size. Use low nozzle pressures where feasible (e.g., 30 to 70 pounds per square inch). Keep spray nozzles within a predetermined maximum distance of target weeds or pests (e.g., within 24 inches of vegetation during spraying). For application of adulticides, use ULV sprays that are calibrated to be effective and environmentally compatible at the proper droplet size (about 10 to 30 microns). (BMP H8)
> Clean containers at an approved site and dispose of at a legal dumpsite or recycle in accordance with manufacturer's instructions if available. (BMP H9)

> The District will provide notification to the public (24 to 48 hours in advance, if possible) and/or appropriate agency(ies) and the San Mateo County Beekeepers Guild when applying pesticides or herbicides for large-scale treatments that will occur in close proximity to homes, heavily populated, high traffic, and sensitive areas (including bee hives). The District applies or participates in the application of herbicides in areas when a joint effort is most effective and/or efficient. (BMP H13)

Chapter 8, Public Services and Hazard Response, provides additional information on the District’s spill prevention and worker safety plans.

**10.2.2.1 Emissions from Equipment Use**

Table 10-4 shows components applicability by percentage as selected in the District for distribution of equipment use activity: surveillance, physical control, vegetation management, biological control, chemical control, or other nonchemical control. Table 10-5 shows land uses associated with selected components: residential, commercial, industrial, agricultural, and open space.

No annual thresholds (see Table 10-3) would be exceeded by the Program based on existing activities. As shown in Table 10-13, the District would not exceed “worst-case” daily thresholds. As shown in Table 10-14, no “typical case” daily thresholds would likely be exceeded by the Program. No ambient air quality standards for any pollutant would be violated solely by mosquito and/or vector control activities. The annual or average daily emissions contribution of the District would not be significant. Furthermore, the difference in emissions from continuation of existing activities under the Proposed Program in combination with additional future activities under the Physical Control, Vegetation Management, and Chemical Control Components in comparison to existing conditions when the NOP was published, would be practically zero, except for NOx emissions.

**Table 10-4**  
San Mateo County Mosquito and Vector Control District’s Selected Components Applicability

<table>
<thead>
<tr>
<th>Surveillance</th>
<th>Physical Control</th>
<th>Vegetation Management</th>
<th>Biological Control</th>
<th>Chemical Control</th>
<th>Other Nonchemical</th>
</tr>
</thead>
<tbody>
<tr>
<td>11%</td>
<td>0%</td>
<td>30%</td>
<td>21%</td>
<td>13%</td>
<td>24%</td>
</tr>
</tbody>
</table>

Sources: Appendix C, San Mateo County Mosquito and Vector Control District

**Table 10-5**  
Land Uses Associated with Selected Components in the Program Area

<table>
<thead>
<tr>
<th>Residential</th>
<th>Commercial</th>
<th>Industrial</th>
<th>Agricultural</th>
<th>Open Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Sources: Appendix C, San Mateo County Mosquito and Vector Control District

Tables 10-6 through 10-11 show estimated ongoing annual criteria emissions by component for the District prior to the additional equipment use associated with expanded activities under the Physical control, Vegetation Management, and Chemical Control Components. Tables 10-7, 10-8, and 10-10 also include the incremental emissions associated with the additional equipment use, plus the combined emissions from both. The tables are derived from the information specific to the District in Appendix C (Air Quality and GHG Technical Report).
### Table 10-6  Estimated Annual Criteria Emissions for Surveillance Component

<table>
<thead>
<tr>
<th>VOCs lbs/year</th>
<th>CO lbs/year</th>
<th>NOx lbs/year</th>
<th>SOx lbs/year</th>
<th>PM10 lbs/year</th>
<th>PM2.5 lbs/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>365</td>
<td>7,550</td>
<td>321</td>
<td>10.2</td>
<td>38.5</td>
<td>24.9</td>
</tr>
</tbody>
</table>

Sources: CARB 2008a; Hare and Springer 1973; USEPA 1991d, 2011b, 2011c, 2012b

### Table 10-7  Estimated Annual Criteria Emissions for Physical Control Component

<table>
<thead>
<tr>
<th></th>
<th>VOCs lbs/year</th>
<th>CO lbs/year</th>
<th>NOx lbs/year</th>
<th>SOx lbs/year</th>
<th>PM10 lbs/year</th>
<th>PM2.5 lbs/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Program</td>
<td>8</td>
<td>170</td>
<td>7</td>
<td>0.2</td>
<td>0.9</td>
<td>0.6</td>
</tr>
<tr>
<td>Additional Equipment</td>
<td>2.4</td>
<td>13.3</td>
<td>17.6</td>
<td>0</td>
<td>1.1</td>
<td>0.9</td>
</tr>
<tr>
<td>Total</td>
<td>10.4</td>
<td>188.3</td>
<td>24.6</td>
<td>0.2</td>
<td>2</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Sources: CARB 2008a; Hare and Springer 1973; USEPA 1991d, 2011b, 2011c, 2012b

### Table 10-8  Estimated Annual Criteria Emissions for Vegetation Management Component

<table>
<thead>
<tr>
<th></th>
<th>VOCs lbs/year</th>
<th>CO lbs/year</th>
<th>NOx lbs/year</th>
<th>SOx lbs/year</th>
<th>PM10 lbs/year</th>
<th>PM2.5 lbs/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Program</td>
<td>973</td>
<td>20,105</td>
<td>855</td>
<td>27.0</td>
<td>102.6</td>
<td>66.4</td>
</tr>
<tr>
<td>Additional Equipment</td>
<td>5.7</td>
<td>31.7</td>
<td>41.8</td>
<td>0</td>
<td>2.6</td>
<td>2.2</td>
</tr>
<tr>
<td>Total</td>
<td>978.7</td>
<td>20,136.7</td>
<td>896.8</td>
<td>27.0</td>
<td>105.2</td>
<td>68.6</td>
</tr>
</tbody>
</table>

Sources: CARB 2008a; Hare and Springer 1973; USEPA 1991d, 2011b, 2011c, 2012b

### Table 10-9  Estimated Annual Criteria Emissions for Biological Control Component

<table>
<thead>
<tr>
<th>VOCs lbs/year</th>
<th>CO lbs/year</th>
<th>NOx lbs/year</th>
<th>SOx lbs/year</th>
<th>PM10 lbs/year</th>
<th>PM2.5 lbs/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>669</td>
<td>13,828</td>
<td>588</td>
<td>18.6</td>
<td>70.5</td>
<td>45.7</td>
</tr>
</tbody>
</table>

Sources: CARB 2008a; Hare and Springer 1973; USEPA 1991d, 2011b, 2011c, 2012b
Table 10-10  Estimated Annual Criteria Emissions for Chemical Control Component

<table>
<thead>
<tr>
<th></th>
<th>VOCs</th>
<th>CO</th>
<th>NO_X</th>
<th>SO_X</th>
<th>PM_10</th>
<th>PM_2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Program</td>
<td>973</td>
<td>20,105</td>
<td>855</td>
<td>27.0</td>
<td>102.6</td>
<td>66.4</td>
</tr>
<tr>
<td>Additional Equipment</td>
<td>0.3</td>
<td>2.4</td>
<td>651.4</td>
<td>1.2</td>
<td>8.9</td>
<td>5.8</td>
</tr>
<tr>
<td>Total</td>
<td>973.03</td>
<td>20,107.4</td>
<td>1,506.4</td>
<td>28.2</td>
<td>111.5</td>
<td>72.2</td>
</tr>
</tbody>
</table>

Sources: CARB 2008a; Hare and Springer 1973; USEPA 1991d, 2011b, 2011c, 2012b

Table 10-11  Estimated Annual Criteria Emissions for Other Nonchemical Control/Trapping Component

<table>
<thead>
<tr>
<th></th>
<th>VOCs</th>
<th>CO</th>
<th>NO_X</th>
<th>SO_X</th>
<th>PM_10</th>
<th>PM_2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>755</td>
<td>15,609</td>
<td>664</td>
<td>21.0</td>
<td>79.6</td>
<td>51.6</td>
</tr>
</tbody>
</table>

Sources: CARB 2008a; Hare and Springer 1973; USEPA 1991d, 2011b, 2011c, 2012b

Table 10-12  Estimated Peak Daily Criteria Emissions for Applicable Components - Simultaneous Operations

<table>
<thead>
<tr>
<th></th>
<th>VOCs</th>
<th>CO</th>
<th>NO_X</th>
<th>SO_X</th>
<th>PM_10</th>
<th>PM_2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Program</td>
<td>25.3</td>
<td>810.2</td>
<td>31.8</td>
<td>1.0</td>
<td>2.1</td>
<td>1.4</td>
</tr>
<tr>
<td>Additional Equipment</td>
<td>0.2</td>
<td>1.1</td>
<td>19.6</td>
<td>0.4</td>
<td>0.34</td>
<td>0.2</td>
</tr>
<tr>
<td>Total</td>
<td>25.5</td>
<td>811.3</td>
<td>51.4</td>
<td>1.4</td>
<td>2.44</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Sources: CARB 2008a; Hare and Springer 1973; USEPA 1991d, 2011b, 2011c, 2012b

10.2.2.2  Emissions from Chemical Use

Estimated VOC emissions for some of the pesticide products the District uses were calculated for two other districts in the San Francisco Bay Area, Marin-Sonoma Mosquito and Vector Control District (MSMVCD) and Napa County Mosquito Abatement District (NCMAD), for their Draft and Final PEIRs, Chapter 10 Air Quality (MSMVCD 2015; NCMAD 2015). The District is using several of the active ingredients used in the VOC calculations for these two district’s PEIRs. Consequently, the conclusions reached in these two PEIRS are applicable herein for the District, namely that the VOC contributions are not significant to the ROG (VOC) operational thresholds contained in Table 10-3 of 54 pounds/day and 10 tons/year.

Some compounds are designated as exempt because they are not considered VOCs due to negligible photochemical reactivity. The exempt compounds are specified in 40 CFR 51.100. Products labeled only
for nonagricultural uses are often excluded from the regulations. Nonagricultural uses include (a) home use, (b) use in structural pest control, (c) industrial or institutional use, (d) control of an animal pest under the written prescription of a veterinarian, or (e) vector control. All other uses are considered agricultural.

The air quality analysis for the MSMVCD Draft PEIR found that total VOC contribution generated by the use of chemical control of undesirable vectors is small (from 95.8 pounds/year in 2006 to 181.6 pounds/year in 2010) in comparison to VOC contributions from all forms of equipment and vehicles (less than 664 pounds/year for all components combined to 892 pounds/year based on highest quarterly emissions) (MSMVCD 2015). Annual thresholds do not apply to estimated emissions shown therein because mosquito and vector control activities do not comprise a stationary source of air contaminants. Based on similar use of pesticides and application methods as for MSMVCD, VOC contribution from the District’s vector control products is expected to be less than significant based on the CEQA significance thresholds. Consequently, the focus of the air quality impact analysis below is on transportation and equipment use for all of the Program components.

### 10.2.3 Surveillance Component

The Surveillance Component would be a continuation of existing activities the District currently practices using applicable techniques, equipment, vehicles, and watercraft. Surveillance involves monitoring mosquito and/or vector populations and habitat, their disease pathogens, and the human/vector interactions. Field counting/sampling and trapping are common mechanisms for surveillance. The environmental impact concerns are phrased as questions as follows for the Surveillance Component.

**Conflict with or obstruct implementation of the applicable Air Quality Attainment Plan or Congestion Management Plan?**

The emission source categories associated with the Surveillance Component include offroad vehicles, onroad vehicles, and watercraft, all of which are mobile sources of nonattainment pollutants NOX, VOCs, PM10, and PM2.5. As discussed in Section 10.1.6, these types of emission sources are included in the SIP emission inventory and required to meet CARB and USEPA nonroad and onroad emission standards applicable on the date of manufacture. Taken together, these conditions establish that the Surveillance Component would not conflict with applicable air quality attainment plans.

**Impact AQ-1:** Based on the general inclusion of Surveillance Component emissions in the SIP emission inventory and the compliance with applicable air regulations, the Surveillance Component would not conflict with applicable air quality plans. Impacts would be less than significant and no mitigation is required.

**Violate any stationary source air quality standard or contribute to an existing or projected air quality violation?**

The Surveillance Component has the potential to emit regulated criteria pollutants, including O3 precursors NOX and VOCs, CO, SO2, PM10, and PM2.5. Estimated peak daily emissions of each of these pollutants from all components combined in the District are shown in Table 10-12 and are less than the daily thresholds shown in Table 10-3. Annual thresholds do not apply to estimated emissions shown in Table 10-6 because mosquito and vector control activities do not comprise a stationary source of air contaminants. Since mosquito and vector control activities are widely dispersed across a broad geographic area, no violation of CAAQS for CO would occur. Based on estimated peak daily emissions for each criteria pollutant and geographic dispersion, the Surveillance Component would not be the sole cause of a violation of either NAAQS or CAAQS.

**Impact AQ-2:** Based on estimated daily emissions for each criteria pollutant, the Surveillance Component would not violate an ambient air quality standard. Impacts would be less than significant and no mitigation is required.
Result in a net increase of any criteria pollutant for which the project region is nonattainment under an applicable federal or state ambient air quality standard (including releasing emissions, which exceed quantitative thresholds for ozone precursors)?

As discussed in Section 10.1.6, the focus of this assessment is on regulated criteria pollutants for which the local air basin is in nonattainment. Nonattainment pollutants include O₃ precursors NOₓ and VOCs, PM₁₀, and PM₂.₅. Estimated peak daily emissions of each of these pollutants from all components combined are shown in Table 10-12 and are less than the daily thresholds shown in Table 10-3. Annual thresholds do not apply to estimated emissions shown in Table 10-6 because mosquito and vector control activities do not comprise a stationary source of air contaminants. Based on estimated peak daily emissions for each criteria pollutant and geographic dispersion, the Surveillance Component would not result in a cumulatively considerable increase of nonattainment pollutants. Further, as discussed in Section 10.2.2.2, the primary sources of VOC emissions from mosquito abatement and vector control activities are from gasoline, diesel, and turbine engines used to conduct the Program. Other sources of VOCs from materials would be relatively minor compared to engine exhaust and would be neither substantial nor cumulatively considerable.

Impact AQ-3: Based on estimated daily emissions for each criteria pollutant, the Surveillance Component would not result in a cumulatively considerable increase of nonattainment pollutants. Impacts would be less than significant and no mitigation is required.

Expose sensitive receptors to substantial pollutant concentrations?

The Surveillance Component has the potential to emit regulated criteria pollutants, including O₃ precursors NOₓ and VOCs, CO, SO₂, PM₁₀, and PM₂.₅. Estimated peak daily emissions of each of these pollutants from all components combined are shown in Table 10-12 and are less than the daily thresholds shown in Table 10-3. Annual thresholds do not apply to estimated emissions shown in Table 10-6 because mosquito and vector control activities do not comprise a stationary source of air contaminants. Since mosquito and vector control activities use relatively small amounts of diesel fuel (most equipment and vehicles are gasoline-powered), potential DPM emissions would be small, transient in nature, and dispersed over a wide geographic area. Thus, no significant risk to sensitive receptors would occur from DPM emissions (as PM₁₀). Based on estimated peak daily emissions for each criteria pollutant, the Surveillance Component would not be the sole cause of a violation of either NAAQS or CAAQS.

Impact AQ-4: Based on the estimated daily emissions for each criteria pollutant, the Surveillance Component would not expose sensitive receptors to substantial pollutant concentrations. Impacts would be less than significant and no mitigation is required.

Create objectionable odors affecting a substantial number of people?

Certain VOCs, sulfur compounds, and chlorine compounds found in some pesticides such as OPs, fumigants, and organochlorines emit characteristic odors when they evaporate (volatilize) into air, even at very low concentrations well within safety limits. The human sense of smell (olfactory system) is sensitive to these types of compounds as a warning mechanism, and some individuals are more sensitive than others. The Surveillance Component would not apply these types of odorous treatments, because it involves mostly field sampling and trapping activities. Thus, people would not be affected by objectionable odors.

Impact AQ-5: The Surveillance Component would not subject people to objectionable odors. No impact would occur.
10.2.4  **Physical Control Component**

The Physical Control Component would be a continuation of existing activities the District currently practices and some additional ditching/excavating using applicable techniques, equipment, vehicles, and watercraft. An additional piece of heavy equipment (tractor) for some of this ditching/excavating is considered herein. This component involves managing vector habitat using source control and permanent control methods that do not use biological agents or chemical pesticides, such as ditch maintenance, debris removal in natural channels, and blockage of access points. The environmental impact concerns are phrased as questions as follows for the Physical Control Component.

**Conflict with or obstruct implementation of the applicable Air Quality Attainment Plan or Congestion Management Plan?**

The emission source categories associated with the Physical Control Component include small equipment, portable equipment, offroad vehicles, onroad vehicles, and watercraft, all of which are mobile sources of nonattainment pollutants NO\textsubscript{X}, VOCs, PM\textsubscript{10}, and PM\textsubscript{2.5}. As discussed in Section 10.1.6, these types of emission sources are included in the SIP emission inventory, required to meet CARB and USEPA nonroad and onroad emission standards applicable on the date of manufacture, and subject to PERP and ATCM as applicable. Taken together, these conditions establish that the Physical Control Component would not conflict with applicable air quality attainment plans.

**Impact AQ-6:** Based on the general inclusion of Physical Control Component emissions in the SIP emission inventory and the compliance with applicable air regulations, the Physical Control Component would not conflict with applicable air quality plans. Impacts would be less than significant and no mitigation is required.

**Violate any stationary source air quality standard or contribute to an existing or projected air quality violation?**

The Physical Control Component has the potential to emit regulated criteria pollutants, including O\textsubscript{3} precursors NO\textsubscript{X} and VOCs, CO, SO\textsubscript{2}, PM\textsubscript{10}, and PM\textsubscript{2.5}. Estimated peak daily emissions of each of these pollutants from all components combined in the District are shown in Table 10-12 and are less than the daily thresholds shown in Table 10-3. Future emissions include the vehicles and equipment used in the current program and also include the use of one tractor for approximately 18 days per year for about 1 hour per day. The combined “existing activity plus expanded future activity requiring a tractor” impacts also are shown in Table 10-12 and would remain less than those under the daily thresholds shown in Table 10-3. Annual thresholds do not apply to estimated emissions shown in Table 10-7 because mosquito and vector control activities do not comprise a stationary source of air contaminants. Since mosquito and vector control activities are widely dispersed across a broad geographic area, no violation of CAAQS for CO would occur. Based on estimated peak daily emissions for each criteria pollutant and geographic dispersion, the Physical Control Component would not be the sole cause of a violation of either NAAQS or CAAQS.

**Impact AQ-7:** Based on estimated daily emissions for each criteria pollutant, the Physical Control Component would not violate an ambient air quality standard. Impacts would be less than significant and no mitigation is required.

**Result in a net increase of any criteria pollutant for which the project region is nonattainment under an applicable federal or state ambient air quality standard (including releasing emissions, which exceed quantitative thresholds for ozone precursors)?**

As discussed in Section 10.1.6, the focus of this assessment is on regulated criteria pollutants for which the local air basin is in nonattainment. Nonattainment pollutants include O\textsubscript{3} precursors NO\textsubscript{X} and VOCs, PM\textsubscript{10}, and PM\textsubscript{2.5}. Estimated peak daily emissions of each of these pollutants from all components combined in the District are shown in Table 10-12 and are less than the daily thresholds shown in Table 10-3. Annual
thresholds do not apply to estimated emissions shown in Table 10-7 because mosquito and vector control activities do not comprise a stationary source of air contaminants. Based on estimated peak daily emissions for each criteria pollutant and geographic dispersion, the Physical Control Component would not result in a cumulatively considerable increase of nonattainment pollutants. Further, as discussed in Section 10.2.2.2, the primary sources of VOC emissions from mosquito abatement and vector control activities are from gasoline, diesel, and turbine engines used to conduct the Program. Other sources of VOCs from materials would be relatively minor compared to engine exhaust and would be neither substantial nor cumulatively considerable.

Impact AQ-8: Based on estimated daily emissions for each criteria pollutant, the Physical Control Component would not result in a cumulatively considerable increase of nonattainment pollutants. Impacts would be less than significant and no mitigation is required.

Expose sensitive receptors to substantial pollutant concentrations?
The Physical Control Component has the potential to emit regulated criteria pollutants, including O₃ precursors NOₓ and VOCs, CO, SO₂, PM₁₀, and PM₂.₅. Estimated peak daily emissions of each of these pollutants all components in the District are shown in Table 10-12 and are less than the daily thresholds shown in Table 10-3. Annual thresholds do not apply to estimated emissions shown in Table 10-7 because mosquito and vector control activities do not comprise a stationary source of air contaminants. Since mosquito and vector control activities use relatively small amounts of diesel fuel (most equipment and vehicles are gasoline-powered), potential DPM emissions would be small, transient in nature, and dispersed over a wide geographic area. Thus, no significant risk to sensitive receptors would occur from DPM emissions (as PM₁₀). Based on estimated peak daily emissions for each criteria pollutant, the Physical Control Component would not be the sole cause of a violation of either NAAQS or CAAQS.

Impact AQ-9: Based on the estimated daily emissions for each criteria pollutant, the Physical Control Component would not expose sensitive receptors to substantial pollutant concentrations. Impacts would be less than significant and no mitigation is required.

Create objectionable odors affecting a substantial number of people?
Certain VOCs, sulfur compounds, and chlorine compounds found in some pesticides such as OPs, fumigants and organochlorines emit characteristic odors when they evaporate (volatilize) into air, even at very low concentrations well within safety limits. The human sense of smell (olfactory system) is sensitive to these types of compounds as a warning mechanism, and some individuals are more sensitive than others. The Physical Control Component would not apply these types of odorous chemical treatments. Thus, people would not be affected by objectionable odors.

Impact AQ-10: The Physical Control Component would not subject people to objectionable odors. No impact would occur.

10.2.5 Vegetation Management Component
The Vegetation Management Component would be a continuation of existing activities the District currently practices using applicable techniques, equipment, vehicles, and watercraft. For expanded physical vegetation management in the future, use of two tractors (as an example of heavy equipment) is considered. Vegetation management is used to reduce the habitat value for mosquitoes and other vectors. The District uses hand tools and sometimes heavy equipment to remove vegetation primarily in aquatic habitats. The District may also apply herbicides to remove vegetation and control breeding habitat. The environmental impact concerns are phrased as questions as follows for the Vegetation Management Component:
Conflict with or obstruct implementation of the applicable Air Quality Attainment Plan or Congestion Management Plan?

The existing emission source categories associated with the Vegetation Management Component include small equipment, portable equipment, offroad vehicles, onroad vehicles, and watercraft, all of which are mobile sources of nonattainment pollutants NOx, VOCs, PM10, and PM2.5. These are supplemented in the future with additional pieces of heavy equipment (source), use of two tractors. As discussed in Section 10.1.6, these types of emission sources are included in the SIP emission inventory, required to meet CARB and USEPA nonroad and onroad emission standards applicable on the date of manufacture, and subject to PERP and ATCM as applicable. Taken together, these conditions establish that the Vegetation Management Component would not conflict with applicable air quality attainment plans.

Impact AQ-11: Based on the general inclusion of Vegetation Management Component emissions in the SIP emission inventory and the compliance with applicable air regulations, the Vegetation Management would not conflict with applicable air quality plans. Impacts would be less than significant and no mitigation is required.

Violate any stationary source air quality standard or contribute to an existing or projected air quality violation?

The Vegetation Management Component has the potential to emit regulated criteria pollutants, including O3 precursors NOx and VOCs, CO, SO2, PM10, and PM2.5. Estimated peak daily emissions of each of these pollutants from all components combined in the District under the current program are shown in Table 10-12 and are less than the daily thresholds shown in Table 10-3. Future emissions include the vehicles and equipment used in the current program and also include the use of one tractor for approximately 42 days per year for about 1.6 hours per day and another tractor for approximately 3 days per day for about 1 hour per day. The combined “existing activity plus expanded future activity requiring a tractor” impacts also are shown in Table 10-12 and would remain less than those under the daily thresholds shown in Table 10-3.

Annual thresholds do not apply to estimated emissions shown in Table 10-8 because mosquito and vector control activities do not comprise a stationary source of air contaminants. Since mosquito and vector control activities are widely dispersed across a broad geographic area, no violation of CAAQS for CO would occur. Based on estimated peak daily emissions for each criteria pollutant and geographic dispersion, the Vegetation Management Component would not be the sole cause of a violation of either NAAQS or CAAQS.

Impact AQ-12: Based on estimated daily emissions for each criteria pollutant, the Vegetation Management Component would not violate an ambient air quality standard. Impacts would be less than significant and no mitigation is required.

Result in a net increase of any criteria pollutant for which the project region is nonattainment under an applicable federal or state ambient air quality standard (including releasing emissions, which exceed quantitative thresholds for ozone precursors)?

As discussed in Section 10.1.6, the focus of this assessment is on regulated criteria pollutants for which the local air basin is in nonattainment. Nonattainment pollutants include O3 precursors NOx and VOCs, PM10, and PM2.5. Estimated peak daily emissions of each of these pollutants from all components combined in the District under the current and future programs are shown in Table 10-12 and are less than the daily thresholds shown in Table 10-3. Annual thresholds do not apply to estimated emissions shown in Table 10-8 because mosquito and vector control activities do not comprise a stationary source of air contaminants. Based on estimated peak daily emissions for each criteria pollutant and geographic dispersion, the Vegetation Management Component would not result in a cumulatively considerable increase of nonattainment pollutants. Further, as discussed in Section 10.2.2.2, the primary sources of VOC emissions from mosquito abatement and vector control activities are from gasoline, diesel, and
turbine engines used to conduct the Program. Other sources of VOCs from materials would be relatively minor compared to engine exhaust and would be neither substantial nor cumulatively considerable.

**Impact AQ-13:** Based on estimated daily emissions for each criteria pollutant, the Vegetation Management Component would not result in a cumulatively considerable increase of nonattainment pollutants. Impacts would be **less than significant** and no mitigation is required.

**Expose sensitive receptors to substantial pollutant concentrations?**

The Vegetation Management Component has the potential to emit regulated criteria pollutants, including O₃ precursors NOₓ and VOCs, CO, SO₂, PM₁₀, and PM₂.₅. Estimated peak daily emissions of each of these pollutants from all components combined in the District are shown in Table 10-12 and are less than the daily thresholds shown in Table 10-3. Annual thresholds do not apply to estimated emissions shown in Table 10-8 because mosquito and vector control activities do not comprise a stationary source of air contaminants. Since mosquito and vector control activities use relatively small amounts of diesel fuel (most equipment and vehicles are gasoline-powered), potential DPM emissions would be small, transient in nature, and dispersed over a wide geographic area. Thus, no significant risk to sensitive receptors would occur from DPM emissions (as PM₁₀). Based on estimated peak daily emissions for each criteria pollutant, the Vegetation Management Component would not be the sole cause of a violation of either NAAQS or CAAQS.

**Impact AQ-14:** Based on the estimated daily emissions for each criteria pollutant, the Vegetation Management Component would not expose sensitive receptors to substantial pollutant concentrations. Impacts would be **less than significant** and no mitigation is required.

**Create objectionable odors affecting a substantial number of people?**

Certain VOCs, sulfur compounds, and chlorine compounds found in some pesticides such as fumigants and organochlorines emit characteristic odors when they evaporate (volatilize) into air, even at very low concentrations well within safety limits. The human sense of smell (olfactory system) is sensitive to these types of compounds as a warning mechanism, and some individuals are more sensitive than others. The Vegetation Management Component would not apply these types of odorous treatments; the herbicides used would not be odorous as well. Thus, people would not be affected by objectionable odors.

**Impact AQ-15:** The Vegetation Management Component would not subject people to objectionable odors. **No impact** would occur.

### 10.2.6 Biological Control Component

The Biological Control Component would be a continuation of existing activities the District currently practices using applicable techniques, equipment, vehicles, watercraft, and aircraft. It involves the use of mosquito predators, i.e., mosquitofish (*Gambusia affinis*). The environmental impact concerns are phrased as questions as follows for the Biological Control Component:

**Conflict with or obstruct implementation of the applicable Air Quality Attainment Plan or Congestion Management Plan?**

The emission source categories associated with the Biological Control Component include small equipment, portable equipment, offroad vehicles, onroad vehicles, watercraft, and aircraft, all of which are mobile sources of nonattainment pollutants NOₓ, VOCs, PM₁₀, and PM₂.₅. As discussed in Section 10.1.6, these types of emission sources are included in the SIP emission inventory, required to meet CARB and USEPA nonroad and onroad emission standards applicable on the date of manufacture, and subject to PERP and ATCM as applicable. Taken together, these conditions establish that the Biological Control Component would not conflict with applicable air quality attainment plans.
Impact AQ-16: Based on the general inclusion of Biological Control Component emissions in the SIP emission inventory and the compliance with applicable air regulations, the Biological Control Component would not conflict with applicable air quality plans. Impacts would be less than significant and no mitigation is required.

Violate any stationary source air quality standard or contribute to an existing or projected air quality violation?

The Biological Control Component has the potential to emit regulated criteria pollutants, including O₃ precursors NOₓ and VOCs, CO, SO₂, PM₁₀, and PM₂.5. Estimated peak daily emissions of each of these pollutants from all components combined in the District are shown in Table 10-12 and are less than the daily thresholds shown in Table 10-3. Annual thresholds do not apply to estimated emissions shown in Table 10-9 because mosquito and vector control activities do not comprise a stationary source of air contaminants. Since mosquito and vector control activities are widely dispersed across a broad geographic area, no violation of CAAQS for CO would occur. Based on estimated peak daily emissions for each criteria pollutant and geographic dispersion, the Biological Control Component would not be the sole cause of a violation of either NAAQS or CAAQS.

Impact AQ-17: Based on estimated daily emissions for each criteria pollutant, the Biological Control Component would not violate an ambient air quality standard. Impacts would be less than significant and no mitigation is required.

Result in a net increase of any criteria pollutant for which the project region is nonattainment under an applicable federal or state ambient air quality standard (including releasing emissions, which exceed quantitative thresholds for ozone precursors)?

As discussed in Section 10.1.6, the focus of this assessment is on regulated criteria pollutants for which the local air basin is in nonattainment. Nonattainment pollutants include O₃ precursors NOₓ and VOCs, PM₁₀, and PM₂.5. Estimated peak daily emissions of each of these pollutants from all components combined in the District are shown in Table 10-12 and are less than the daily thresholds shown in Table 10-3. Annual thresholds do not apply to estimated emissions shown in Table 10-9 because mosquito and vector control activities do not comprise a stationary source of air contaminants. Based on estimated peak daily emissions for each criteria pollutant and geographic dispersion, the Biological Control Component would not result in a cumulatively considerable increase of nonattainment pollutants. Further, as discussed in Section 10.2.2.2, the primary sources of VOC emissions from mosquito abatement and vector control activities are from gasoline, diesel, and turbine engines used to conduct the Program. Other sources of VOCs from materials would be relatively minor compared to engine exhaust and would be neither substantial nor cumulatively considerable.

Impact AQ-18: Based on estimated daily emissions for each criteria pollutant, the Biological Control Component would not result in a cumulatively considerable increase of nonattainment pollutants. Impacts would be less than significant and no mitigation is required.

Expose sensitive receptors to substantial pollutant concentrations?

The Biological Control Component has the potential to emit regulated criteria pollutants, including O₃ precursors NOₓ and VOCs, CO, SO₂, PM₁₀, and PM₂.5. Estimated peak daily emissions of each of these pollutants from all components combined in the District are shown in Table 10-12 and are less than the daily thresholds shown in Table 10-3. Annual thresholds do not apply to estimated emissions shown in Table 10-9 because mosquito and vector control activities do not comprise a stationary source of air contaminants. Since mosquito and vector control activities use relatively small amounts of diesel fuel (most equipment and vehicles are gasoline-powered), potential DPM emissions would be small, transient in nature, and dispersed over a wide geographic area. Thus, no significant risk to sensitive receptors would occur from DPM emissions (as PM₁₀). Based on estimated peak daily emissions for each criteria pollutant, the Biological Control Component would not be the sole cause of a violation of either NAAQS or CAAQS.
Impact AQ-19: Based on the estimated daily emissions for each criteria pollutant, the Biological Control Component would not expose sensitive receptors to substantial pollutant concentrations. Impacts would be less than significant and no mitigation is required.

Create objectionable odors affecting a substantial number of people?
Certain VOCs, sulfur compounds, and chlorine compounds found in some pesticides emit characteristic odors when they evaporate (volatilize) into air, even at very low concentrations well within safety limits. The human sense of smell (olfactory system) is sensitive to these types of compounds as a warning mechanism, and some individuals are more sensitive than others. The Biological Control Component would not apply these types of odorous treatments. Thus, people would not be subjected to objectionable odors.

Impact AQ-20: The Biological Control Component would not subject people to objectionable odors. No impact would occur.

10.2.7 Chemical Control Component
The Chemical Control Component would be a continuation of existing activities the District currently practices using applicable techniques, equipment, vehicles, watercraft, and aircraft. For aerial adulticiding, the District may use fixed-wing aircraft in the future (Appendix C, Attachment B). It involves the application of herbicides, insecticides, and rodenticides to reduce populations of vector species. The District employs BMPs listed in Section 10.2.2 to avoid or minimize impacts to air quality from pesticide use. The environmental impact concerns are phrased as questions as follows for the Chemical Control Component:

Conflict with or obstruct implementation of the applicable Air Quality Attainment Plan or Congestion Management Plan?
The existing emission source categories associated with the Chemical Control Component include small equipment, portable equipment, offroad vehicles, onroad vehicles, watercraft, and aircraft, all of which are mobile sources of nonattainment pollutants NOX, VOCs, PM10, and PM2.5. These existing sources are supplemented in the future with the added use of fixed-wing aircraft. As discussed in Section 10.1.6, these types of emission sources are included in the SIP emission inventory, required to meet CARB and USEPA nonroad and onroad emission standards applicable on the date of manufacture, and subject to PERP and ATCM as applicable. Taken together, these conditions establish that the Chemical Control Component would not conflict with applicable air quality attainment plans.

Impact AQ-21: Based on the general inclusion of Chemical Control Component emissions in the SIP emission inventory and the compliance with applicable air regulations, the Chemical Control Component would not conflict with applicable air quality plans. Impacts would be less than significant and no mitigation is required.

Violate any stationary source air quality standard or contribute to an existing or projected air quality violation?
The Chemical Control Component has the potential to emit regulated criteria pollutants, including O3 precursors NOX and VOCs, CO, SO2, PM10, and PM2.5. Estimated peak daily emissions of each of these pollutants all components combined in the District under the current program are shown in Table 10-12 and are less than the daily thresholds shown in Table 10-3. Future emissions include the same equipment and vehicles used in the current program plus the use of up to three fixed-wing aircraft. It is estimated that two of the aircraft would be used 2 days a year for approximately 1 hour a day, and one aircraft would be used 17 days a year for a maximum of approximately 4 hours a day. Future impacts including the fixed-wing aircraft also are shown in Table 10-12, and the combined emissions would remain less than the daily thresholds shown in Table 10-3.

Annual thresholds do not apply to estimated emissions shown in Table 10-10 because mosquito and vector control activities do not comprise a stationary source of air contaminants. Since mosquito and
vector control activities are widely dispersed across a broad geographic area, no violation of CAAQS for CO would occur. Based on estimated peak daily emissions for each criteria pollutant and geographic dispersion, the Chemical Control Component would not be the sole cause of a violation of either NAAQS or CAAQS.

Impact AQ-22: Based on estimated daily emissions for each criteria pollutant, the Chemical Control Component would violate an ambient air quality standard. Impacts would be less than significant and no mitigation is required.

Result in a net increase of any criteria pollutant for which the project region is nonattainment under an applicable NAAQS or CAAQS (including releasing emissions, which exceed quantitative thresholds for \( O_3 \) precursors)?

As discussed in Section 10.1.6, the focus of this assessment is on regulated criteria pollutants for which the local air basin is in nonattainment. Nonattainment pollutants include \( O_3 \) precursors NO\( X \) and VOCs, PM\( _{10} \), and PM\( _{2.5} \). Estimated peak daily emissions of each of these pollutants from all components combined in the District under the current and future programs are shown in Table 10-12 and are less than the daily thresholds shown in Table 10-3. Annual thresholds do not apply to estimated emissions shown in Table 10-10 because mosquito and vector control activities do not comprise a stationary source of air contaminants. Based on estimated peak daily emissions for each criteria pollutant and geographic dispersion, the Chemical Control Component would not result in a cumulatively considerable increase of nonattainment pollutants. Further, as discussed in Section 10.2.2.2, the primary sources of VOC emissions from mosquito abatement and vector control activities are from gasoline, diesel, and turbine engines used to conduct the Program. Other sources of VOCs from pesticide materials would be relatively minor compared to engine exhaust and would be neither substantial nor cumulatively considerable.

Impact AQ-23: Based on estimated daily emissions for each criteria pollutant, the Chemical Control Component would not result in a cumulatively considerable increase of nonattainment pollutants. Impacts would be less than significant and no mitigation is required.

Expose sensitive receptors to substantial pollutant concentrations?

The Chemical Control Component has the potential to emit regulated criteria pollutants, including \( O_3 \) precursors NO\( X \) and VOCs, CO, SO\( _2 \), PM\( _{10} \), and PM\( _{2.5} \). Estimated peak daily emissions of each of these pollutants from all components combined in the District under the current and future programs are shown in Table 10-12 and are less than the daily thresholds shown in Table 10-3. Annual thresholds do not apply to estimated emissions shown in Table 10-10 because mosquito and vector control activities do not comprise a stationary source of air contaminants. Since mosquito and vector control activities use relatively small amounts of diesel fuel (most equipment and vehicles are gasoline-powered), potential DPM emissions would be small, transient in nature, and dispersed over a wide geographic area. Thus, no significant risk to sensitive receptors would occur from DPM emissions (as PM\( _{10} \)). Based on estimated peak daily emissions for each criteria pollutant, the Chemical Control Component would not be the sole cause of a violation of either NAAQS or CAAQS.

Impact AQ-24: Based on the estimated daily emissions for each criteria pollutant, the Chemical Control Component would not expose sensitive receptors to substantial pollutant concentrations. Impacts would be less than significant and no mitigation is required.

Create objectionable odors affecting a substantial number of people?

Certain VOCs, sulfur compounds, and chlorine compounds found in some pesticides such as OPs, fumigants and organochlorines emit characteristic odors when they evaporate (volatilize) into air, even at very low concentrations well within safety limits. Pesticides currently used use emit phenols (e.g., deltamethrin, etofenprox, permethrin, and lambda-cyhalothrin). Materials such as Bti in liquid form and the adulticides pyrethrin and permethrin have an odor. Due to limited applicability, small quantities of these
types of substances are typically used. Bti liquid is odorous and used in greater quantities by the District as a mosquito larvicide than the use of the other chemicals for adult insect control. Lambda-cyhalothrin is only used in very small quantities from a can to treat ground-nesting yellow jackets. Some of the same chemicals that produce odors would be used in the future, as well, including pyrethrin and permethrin.

The human sense of smell (olfactory system) is sensitive to these types of compounds as a warning mechanism, and some individuals are more sensitive than others. The Chemical Control Component would apply certain types of odorous treatments using hydraulic spraying and atomizing (fogging), excluding lambda-cyhalothrin, which could result in drift of small droplets and gaseous vapors. Depending on atmospheric conditions (i.e., wind direction, wind speed, stability class), this drift could subject people to objectionable odors near a treatment area. Without site-specific information, it cannot be determined whether an objectionable odor may persist downwind of a particular treatment area; therefore, an application containing an odorous compound may impact an undefined number of people for an undefined period of time. The materials have been used in the current Program, and people have not complained about odors. However, it is possible that complaints could occur in the future and could exceed the thresholds of 5 confirmed complaints per year averaged over 3 years.

**Impact AQ-25:** The Chemical Control Component could subject people to objectionable odors. Impacts could be potentially significant but mitigable.

To mitigate Impact AQ-25, the District and its contractors shall implement one or more of the following measures as applicable to the specific application situation to reduce drift towards human populations/residences from the ground and aerial applications of any of the odorous treatment compounds: deltamethrin, etofenprox, permethrin, resmethrin, Bti liquid, pyrethrin, and lambda-cyhalothrin.

**Mitigation Measure AQ-25a:** When feasible, defer application of treatment compounds until such time that favorable wind conditions would reduce or avoid the risk of drift into populated areas.

**Mitigation Measure AQ-25b:** Use weather forecasts, real-time observations, wind meters, and global positioning system (GPS) equipment when applicable to assist in documenting site-specific compliance with all label requirements for drift mitigation.

**Mitigation Measure AQ-25c:** Use precision application technology to reduce drift and the total amount of material applied. This measure can include (1) Precision guidance systems that minimize ground or aerial spray overlap (e.g., GPS and Real Time Kinetics – GPS/RTK) and (2) Computer-guided application systems that integrate real-time meteorological data and computer model guidance to reduce drift from aerial application (e.g., trade names “AIMMS,” “Wingman™ GX,” and “NextStar™ Flow Control”). This technology is possible with equipment such as helicopter/aircraft and application of adulticides with larger truck-mounted ULV foggers but not for small site-specific applications by hand equipment or ATVs. The District has physical site information (e.g., size of treatment area) to assist in precision of the application.

Use of any one of these measures would reduce the impact to less than significant.
10.2.8 **Other Nonchemical Control/Trapping Component**

As applicable, the Other Nonchemical Control/Trapping Component would be a continuation of existing activities the District currently practices using applicable techniques, equipment, and vehicles. An example of these types of activities would be trapping of rodents and/or yellow jackets to determine presence in an area. The equipment used would be supplemented with the use of traps should the District need to engage in live trapping of raccoons and skunks in the future. The environmental impact concerns are phrased as questions as follows for the Other Nonchemical Control/Trapping Component.

**Conflict with or obstruct implementation of the applicable Air Quality Attainment Plan or Congestion Management Plan?**

The emission source categories associated with the Other Nonchemical Control/Trapping Component include small equipment, portable equipment, offroad vehicles, onroad vehicles, watercraft, and aircraft, all of which are mobile sources of nonattainment pollutants NO\textsubscript{X}, VOCs, PM\textsubscript{10}, and PM\textsubscript{2.5}. As discussed in Section 10.1.6, these types of emission sources are included in the SIP emission inventory, required to meet CARB and USEPA nonroad and onroad emission standards applicable on the date of manufacture, and subject to PERP and ATCM as applicable. Taken together, these conditions establish that the Other Nonchemical Control/Trapping Component would not conflict with applicable air quality attainment plans.

**Impact AQ-26:** Based on the general inclusion of Other Nonchemical Control/Trapping Component emissions in the SIP emission inventory and the compliance with applicable air regulations, the Other Nonchemical Control/Trapping Component would not conflict with applicable air quality plans. Impacts would be less than significant and no mitigation is required.

**Violate any stationary source air quality standard or contribute to an existing or projected air quality violation?**

The Other Nonchemical Control/Trapping Component has the potential to emit regulated criteria pollutants, including O\textsubscript{3} precursors NO\textsubscript{X} and VOCs, CO, SO\textsubscript{2}, PM\textsubscript{10}, and PM\textsubscript{2.5}. Estimated peak daily emissions of each of these pollutants from all components combined in the District are shown in Table 10-12 and are less than the daily thresholds shown in Table 10-3. Annual thresholds do not apply to estimated emissions shown in Table 10-11 because mosquito and vector control activities do not comprise a stationary source of air contaminants. Since mosquito and vector control activities are widely dispersed across a broad geographic area, no violation of CAAQS for CO would occur. Based on estimated peak daily emissions for each criteria pollutant and geographic dispersion, the Other Nonchemical Control/Trapping Component would not be the sole cause of a violation of either NAAQS or CAAQS.

**Impact AQ-27:** Based on estimated daily emissions for each criteria pollutant, the Other Nonchemical Control/Trapping Component would not violate an ambient air quality standard. Impacts would be less than significant and no mitigation is required.

**Result in a net increase of any criteria pollutant for which the project region is nonattainment under an applicable federal or state ambient air quality standard (including releasing emissions, which exceed quantitative thresholds for ozone precursors)?**

As discussed in Section 10.1.6, the focus of this assessment is on regulated criteria pollutants for which the local air basin is in nonattainment. Nonattainment pollutants include O\textsubscript{3} precursors NO\textsubscript{X} and VOCs, PM\textsubscript{10}, and PM\textsubscript{2.5}. Estimated peak daily emissions of each of these pollutants from all components combined in the District are shown in Table 10-12 and are less than the daily thresholds shown in Table 10-3. Annual thresholds do not apply to estimated emissions shown in Table 10-11 because mosquito and vector control activities do not comprise a stationary source of air contaminants. Based on estimated peak daily emissions for each criteria pollutant and geographic dispersion, the Other
Nonchemical Control/Trapping Component would not result in a cumulatively considerable increase of nonattainment pollutants. Further, as discussed in Section 10.2.2.2, the primary sources of VOC emissions from mosquito abatement and vector control activities are from gasoline, diesel, and turbine engines used to conduct the Program. Other sources of VOCs from pesticide materials would be relatively minor compared to engine exhaust and would be neither substantial nor cumulatively considerable.

**Impact AQ-28:** Based on estimated daily emissions for each criteria pollutant, the Other Nonchemical Control/Trapping Component would not result in a cumulatively considerable increase of nonattainment pollutants. Impacts would be less than significant and no mitigation is required.

**Expose sensitive receptors to substantial pollutant concentrations?**

The Other Nonchemical Control/Trapping Component has the potential to emit regulated criteria pollutants, including O₃ precursors NOₓ and VOCs, CO, SO₂, PM₁₀, and PM₂.₅. Estimated peak daily emissions of each of these pollutants from all components combined in the District are shown in Table 10-12 and are less than the daily thresholds shown in Table 10-3. Annual thresholds do not apply to estimated emissions shown in Table 10-11 because mosquito and vector control activities do not comprise a stationary source of air contaminants. Since mosquito and vector control activities use relatively small amounts of diesel fuel (most equipment and vehicles are gasoline-powered), potential DPM emissions would be small, transient in nature, and dispersed over a wide geographic area. Thus, no significant risk to sensitive receptors would occur from DPM emissions (as PM₁₀). Based on estimated peak daily emissions for each criteria pollutant, the Other Nonchemical Control/Trapping Component would not be the sole cause of a violation of either NAAQS or CAAQS.

**Impact AQ-29:** Based on the estimated daily emissions for each criteria pollutant, the Other Nonchemical Control/Trapping Component would not expose sensitive receptors to substantial pollutant concentrations. Impacts would be less than significant and no mitigation is required.

**Create objectionable odors affecting a substantial number of people?**

Certain VOCs, sulfur compounds, and chlorine compounds found in some pesticides emit characteristic odors when they evaporate (volatilize) into air, even at very low concentrations well within safety limits. The human sense of smell (olfactory system) is sensitive to these types of compounds as a warning mechanism, and some individuals are more sensitive than others. The Other Nonchemical Control/Trapping Component would not apply these types of odorous treatments. Thus, people would not be subjected to objectionable odors.

**Impact AQ-30:** The Other Nonchemical Control/Trapping Component would not subject people to objectionable odors. No impact would occur.
10.2.9 **Public Education**

Public education activities under the Existing Program would continue into the future under the Proposed Program without modifications that would affect air quality. Therefore, there is no impact to air quality from public outreach activities.

10.2.10 **Environmental Impacts Summary**

Table 10-13 presents a summary of air quality impacts associated with the six technical components (i.e., excluding public education), which were combined with existing and future activities for the overall Proposed Program, in comparison to existing emissions inventories and conditions. The air quality impact callouts correspond to those in Sections 10.2.3 through 10.2.8. The incremental impacts associated with the additional activities under Physical Control, Vegetation Management, and Chemical Control Components (additional heavy equipment [tractors] and fixed-wing aircraft for possible adulticiding) are shown above in Tables 10-7, 10-8, and 10-10, along with total emissions of the Proposed Program. These emissions also were added to Table 10-12 to assess the worst-case scenario based on the simultaneous operation of all components.

As shown, the additional equipment use proposed for the future does not trigger new significant impacts. The only potentially significant but mitigable impact would result from the Chemical Control Component, which could subject people to objectionable odors under both existing and future Programs.
### Table 10-13  Summary of Air Quality Impacts by Technical Component

<table>
<thead>
<tr>
<th>Impact Statement</th>
<th>Surveillance</th>
<th>Physical Control</th>
<th>Vegetation Management</th>
<th>Biological Control</th>
<th>Chemical Control</th>
<th>Other Nonchemical/ Trapping</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Effects on Air Quality</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Impact AQ-1</strong>: Based on the general inclusion of Surveillance Component emissions in the SIP emission inventory and the compliance with applicable air regulations, the Surveillance Component would not conflict with applicable air quality plans. Impacts would be less than significant and no mitigation is required.</td>
<td>LS</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td><strong>Impact AQ-2</strong>: Based on estimated daily emissions for each criteria pollutant, the Surveillance Component would not violate an ambient air quality standard. Impacts would be less than significant and no mitigation is required.</td>
<td>LS</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td><strong>Impact AQ-3</strong>: Based on estimated daily emissions for each criteria pollutant, the Surveillance Component would not result in a cumulatively considerable increase of nonattainment pollutants. Impacts would be less than significant and no mitigation is required.</td>
<td>LS</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td><strong>Impact AQ-4</strong>: Based on the estimated daily emissions for each criteria pollutant, the Surveillance Component would not expose sensitive receptors to substantial pollutant concentrations. Impacts would be less than significant and no mitigation is required.</td>
<td>LS</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td><strong>Impact AQ-5</strong>: The Surveillance Component would not subject people to objectionable odors. No impact would occur.</td>
<td>N</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td><strong>Impact AQ-6</strong>: Based on the general inclusion of Physical Control Component emissions in the SIP emission inventory and the compliance with applicable air regulations, the Physical Control Component would not conflict with applicable air quality plans. Impacts would be less than significant and no mitigation is required.</td>
<td>na</td>
<td>LS</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
</tbody>
</table>
### Table 10-13  Summary of Air Quality Impacts by Technical Component

<table>
<thead>
<tr>
<th>Impact Statement</th>
<th>Surveillance</th>
<th>Physical Control</th>
<th>Vegetation Management</th>
<th>Biological Control</th>
<th>Chemical Control</th>
<th>Other Nonchemical/Trapping</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Impact AQ-7:</strong> Based on estimated daily emissions for each criteria pollutant, the Physical Control Component would not violate an ambient air quality standard. Impacts would be <em>less than significant</em> and no mitigation is required.</td>
<td>na</td>
<td>LS</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td><strong>Impact AQ-8:</strong> Based on estimated daily emissions for each criteria pollutant, the Physical Control Component would not result in a cumulatively considerable increase of nonattainment pollutants. Impacts would be <em>less than significant</em> and no mitigation is required.</td>
<td>na</td>
<td>LS</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td><strong>Impact AQ-9:</strong> Based on the estimated daily emissions for each criteria pollutant, the Physical Control Component would not expose sensitive receptors to substantial pollutant concentrations. Impacts would be <em>less than significant</em> and no mitigation is required.</td>
<td>na</td>
<td>LS</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td><strong>Impact AQ-10:</strong> The Physical Control Component would not subject people to objectionable odors. <em>No impact</em> would occur.</td>
<td>na</td>
<td>N</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td><strong>Impact AQ-11:</strong> Based on the general inclusion of Vegetation Management Component emissions in the SIP emission inventory and the compliance with applicable air regulations, the Vegetation Management would not conflict with applicable air quality plans. Impacts would be <em>less than significant</em> and no mitigation is required.</td>
<td>na</td>
<td>na</td>
<td>LS</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td><strong>Impact AQ-12:</strong> Based on estimated daily emissions for each criteria pollutant, the Vegetation Management Component would not violate an ambient air quality standard. Impacts would be <em>less than significant</em> and no mitigation is required.</td>
<td>na</td>
<td>na</td>
<td>LS</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
</tbody>
</table>
### Table 10-13 Summary of Air Quality Impacts by Technical Component

<table>
<thead>
<tr>
<th>Impact Statement</th>
<th>Surveillance</th>
<th>Physical Control</th>
<th>Vegetation Management</th>
<th>Biological Control</th>
<th>Chemical Control</th>
<th>Other Nonchemical/Trapping</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Impact AQ-13</strong>: Based on estimated daily emissions for each criteria pollutant, the Vegetation Management Component would not result in a cumulatively considerable increase of nonattainment pollutants. Impacts would be less than significant and no mitigation is required.</td>
<td>na</td>
<td>na</td>
<td>LS</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td><strong>Impact AQ-14</strong>: Based on the estimated daily emissions for each criteria pollutant, the Vegetation Management Component would not expose sensitive receptors to substantial pollutant concentrations. Impacts would be less than significant and no mitigation is required.</td>
<td>na</td>
<td>na</td>
<td>LS</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td><strong>Impact AQ-15</strong>: The Vegetation Management Component would not subject people to objectionable odors. No impact would occur.</td>
<td>na</td>
<td>na</td>
<td>N</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td><strong>Impact AQ-16</strong>: Based on the general inclusion of Biological Control Component emissions in the SIP emission inventory and the compliance with applicable air regulations, the Biological Control Component would not conflict with applicable air quality plans. Impacts would be less than significant and no mitigation is required.</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>LS</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td><strong>Impact AQ-17</strong>: Based on estimated daily emissions for each criteria pollutant, the Biological Control Component would not violate an ambient air quality standard. Impacts would be less than significant and no mitigation is required.</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>LS</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td><strong>Impact AQ-18</strong>: Based on estimated daily emissions for each criteria pollutant, the Biological Control Component would not result in a cumulatively considerable increase of nonattainment pollutants. Impacts would be less than significant and no mitigation is required.</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>LS</td>
<td>na</td>
<td>na</td>
</tr>
</tbody>
</table>
## Summary of Air Quality Impacts by Technical Component

<table>
<thead>
<tr>
<th>Impact Statement</th>
<th>Surveillance</th>
<th>Physical Control</th>
<th>Vegetation Management</th>
<th>Biological Control</th>
<th>Chemical Control</th>
<th>Other Nonchemical/Trapping</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Impact AQ-19</strong>: Based on the estimated daily emissions for each criteria pollutant, the Biological Control Component would not expose sensitive receptors to substantial pollutant concentrations. Impacts would be less than significant and no mitigation is required.</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>LS</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td><strong>Impact AQ-20</strong>: The Biological Control Component would not subject people to objectionable odors. <strong>No impact would occur.</strong></td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>N</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td><strong>Impact AQ-21</strong>: Based on the general inclusion of Chemical Control Component emissions in the SIP emission inventory and the compliance with applicable air regulations, the Chemical Control Component would not conflict with applicable air quality plans. Impacts would be less than significant and no mitigation is required.</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>LS</td>
<td>na</td>
</tr>
<tr>
<td><strong>Impact AQ-22</strong>: Based on estimated daily emissions for each criteria pollutant, the Chemical Control Component would violate an ambient air quality standard. Impacts would be less than significant and no mitigation is required.</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>LS</td>
<td>na</td>
</tr>
<tr>
<td><strong>Impact AQ-23</strong>: Based on estimated daily emissions for each criteria pollutant, the Chemical Control Component would not result in a cumulatively considerable increase of nonattainment pollutants. Impacts would be less than significant and no mitigation is required.</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>LS</td>
<td>na</td>
</tr>
<tr>
<td><strong>Impact AQ-24</strong>: Based on the estimated daily emissions for each criteria pollutant, the Chemical Control Component would not expose sensitive receptors to substantial pollutant concentrations. Impacts would be less than significant and no mitigation is required.</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>LS</td>
<td>na</td>
</tr>
<tr>
<td><strong>Impact AQ-25</strong>: The Chemical Control Component could subject people to objectionable odors. Impacts could be potentially significant but mitigable.</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>SM</td>
<td>na</td>
</tr>
</tbody>
</table>
Table 10-13  Summary of Air Quality Impacts by Technical Component

<table>
<thead>
<tr>
<th>Impact Statement</th>
<th>Surveillance</th>
<th>Physical Control</th>
<th>Vegetation Management</th>
<th>Biological Control</th>
<th>Chemical Control</th>
<th>Other Nonchemical/Trapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact AQ-26: Based on the general inclusion of Other Nonchemical Control/Trapping Component emissions in the SIP emission inventory and the compliance with applicable air regulations, the Other Nonchemical Control/Trapping Component would not conflict with applicable air quality plans. Impacts would be less than significant and no mitigation is required.</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>LS</td>
</tr>
<tr>
<td>Impact AQ-27: Based on estimated daily emissions for each criteria pollutant, the Other Nonchemical Control/Trapping Component would not violate an ambient air quality standard. Impacts would be less than significant and no mitigation is required.</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>LS</td>
</tr>
<tr>
<td>Impact AQ-28: Based on estimated daily emissions for each criteria pollutant, the Other Nonchemical Control/Trapping Component would not result in a cumulatively considerable increase of nonattainment pollutants. Impacts would be less than significant and no mitigation is required.</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>LS</td>
</tr>
<tr>
<td>Impact AQ-29: Based on the estimated daily emissions for each criteria pollutant, the Other Nonchemical Control/Trapping Component would not expose sensitive receptors to substantial pollutant concentrations. Impacts would be less than significant and no mitigation is required.</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>LS</td>
</tr>
<tr>
<td>Impact AQ-30: The Other Nonchemical Control/Trapping Component would not subject people to objectionable odors. No impact would occur.</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>N</td>
</tr>
</tbody>
</table>

Sources: BAAQMD 2017; Hare and Springer 1973; CARB 2008a; USEPA 1991d, 2011b, 2011c, 2012b

LS = Less-than-significant impact
N = No impact
na = Not applicable
SM = Potentially significant but mitigable impact
SU = Significant and unavoidable impact
10.2.11 Mitigation and Monitoring

Except for potential odor impacts under the Chemical Control Component (Impact AQ-25), all other impacts are either less than significant (LS) or no impact (N) and require no mitigation.

To mitigate Impact AQ-25, the District and its contractors may implement any one of the following measures as applicable to reduce drift from the ground and aerial application of odorous treatment compounds: deltamethrin, etofenprox, permethrin, resmethrin, Bti liquid, and pyrethrin, and lambda-cyhalothrin.

Mitigation Measure AQ-25a: When feasible, defer application of treatment compounds until such time that favorable wind conditions would reduce or avoid the risk of drift into populated areas.

> Location: Areas to receive treatment with pesticides that are near residential and commercial land uses
> Monitoring/Reporting Action: District staff to check current land use maps or aerial photos prior to treatments
> Effectiveness Criteria: Document odor complaints from the public
> Responsible Agency: District
> Timing: Prior to chemical treatments

Mitigation Measure AQ-25b: Use weather forecasts, real-time observations, wind meters, and GPS equipment when applicable to assist in documenting site-specific compliance with all label requirements for drift mitigation.

> Location: Areas to receive treatment with pesticides that are near residential and commercial land uses
> Monitoring/Reporting Action: District staff to check current land use maps or aerial photos prior to treatments
> Effectiveness Criteria: Document odor complaints from the public
> Responsible Agency: District
> Timing: Prior to chemical treatments

Mitigation Measure AQ-25c: Use precision application technology to reduce drift and the total amount of material applied. This measure can include (1) precision guidance systems that minimize ground or aerial spray overlap (e.g., GPS and Real Time Kinetics – GPS/RTK), and (2) computer-guided application systems that integrate real-time meteorological data and computer model guidance to reduce drift from aerial application (e.g., trade names “AIMMS,” “Wingman™ GX,” and “NextStar™ Flow Control”). This technology is possible with equipment such as helicopter/aircraft and application of adulticides with larger truck-mounted ULV foggers but not for small site-specific applications by hand equipment or ATVs. The District has physical site information (e.g., size of treatment area) to assist in precision of the application.

> Location: Areas to receive treatment with pesticides that are near residential and commercial land uses
> Monitoring/Reporting Action: District staff to check current land use maps or aerial photos prior to treatments
> Effectiveness Criteria: Document odor complaints from the public
> Responsible Agency: District
> Timing: Prior to chemical treatments